Steven C. Chapra Raymond P. Canale

Berger Chair in Computing and Engineering Professor Emeritus of Civil Engineering
Tufts University University of Michigan

Numerical Methods for Engineers
o With AY oftware and Programming Applications
Fourth Edition

Boston Burr Ridge, (L Dubuque, IA Madison, Wl New York San Francisco St. Louis
Bangkok Bogotd Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

oftware’

9.1

CHAPTER 9

Gauss Elimination

This chapter deals with simultaneous linear algebraic equations that can be represented
generally as

anx; +apx; + -+ apx, = by
a21%1 + apnxo + -+ -+ agpx, = by

(9'.1)

An1 X1 + GnaX2 + - - + AppXy, = by

where the a’s are constant coefficients and the b’s are constants.

The technique described in this chapter is called Gauss elimination because it involves
combining equations to eliminate unknowns. Although it is one of the earliest methods for
solving simultaneous equations, it remains among the most important algorithms in use
today and is the basis for linear equation solving on many popular software packages.

SOLVING SMALL NUMBERS OF EQUATIONS

Before proceeding to the computer methods, we will describe several methods that are
appropriate for solving small (n < 3) sets of simultaneous equations and that do not re-
quire a computer. These are the graphical method, Cramer’s rule, and the elimination of
unknowns.

9.1.1 The Graphical Method

A graphical solution is obtainable for two equations by plotting them on Cartesian coordi-
nates with one axis corresponding to x; and the other to x,. Because we are dealing with lin-
ear systems, each equation is a straight line. This can be easily illustrated for the general
equations

anx; +apx; = b

anx1+ anxy = by

GAUSS ELIMINATION

EXAMPLE 9.1

Both equations can be solved for xy:

a b
Xp=——Jx;1 4+ —
a an
as by
Xp=—| — Jx1+— .
az axn

Thus, the equations are now in the form of straight lines; that is, x; = (slope) x; + inter- -

cept. These lines can be graphed on Cartesian coordinates with x, as the ordinate and X as
the abscissa. The values of x; and x; at the intersection of the lines represent the solution.
The Graphical Method for Two Equations

Problem Statement. Use the graphical method to solve

3x; 4+ 2x0 = 18 © O (B9.1Y)
X 42 =2 (E9.1.2)

Solution. Let x; be the abscissa. Solve Eq (E9.1.1) for x3:

3
Xy = —Exl +9

which, when plotted on Fig. 9.1, is a straight line with an intercept of 9 and a slope of —3/2.

FIGURE 9.1

Graphical solution of a set of two simultaneous linear algebraic equations. The intersection of the

lines represents the solution.

2.1 _SOLVING SMALL NUMBERS OF EQUATIONS 233

sction of th

Equation (E9.1.2) can also be solved for X!
1
Xy = Exl +1

which is also plotted on Fig. 9.1. The solution is the intersection of the two lines at x =4 !

and x = 3. This result can be checked by substituting these values into the original equa- ‘
tions to yield

34) +203) =18 |
-4 +203)=2

Thus, the results are equivalent to the right-hand sides of the original equations.

For three simultaneous equations, each equation would be represented by a plane in
a three-dimensional coordinate system. The point where the three planes intersect would
represent the solution. Beyond three equations, graphical methods break down and, conse-
quently, have little practical value for solving simultaneous equations. However, they some-
times prove useful in visualizing properties of the solutions. For example, Fig. 9.2 depicts
three cases that can pose problems when solving sets of linear equations. Figure 9.24 shows
the case where the two equations represent parallel lines. For such situations, there is no
solution because the lines never cross. Figure 9.2 depicts the case where the two lines are
coincident. For such situations there is an infinite number of solutions. Both types of
systems are said to be singular. In addition, systems that are very close to being singular
(Fig. 9.2¢) can also cause problems. These systems are said to be ill-conditioned.
Graphically, this corresponds to the fact that it is difficult to identify the exact point at
which the lines intersect. Ill-conditioned systems will also pose problems when they are
encountered during the numerical solution of linear equations. This is because they will be
extremely sensitive to round-off error (recall Sec. 4.2.3).

~FIGURE 9.2

- Graphical depiction of singular and illconditioned systems: {a} no solution, (b) infinite solutions,
and (c} illconditioned system where the slopes are so close that the point of infersection is
difficult to detect visually.

GAUSS ELIMINATION

EXAMPLE 9.2 Determinants

9.1.2 Determinants and Cramer’s Rule

Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly introduce the concept of the determi-
nant, which is used to implement Cramer’s rule. In addition, the determinant has relevance
to the evaluation of the ill-conditioning of a matrix.

Determinants. The determinant can be illustrated for a set of three equations:
[AN{X} = {B}
where [A] is the coefficient matrix:
ai; a4 ap
[Al=| a2 axn axn
a1 axn ass
The determinant D of this system is formed from the coefficients of the equation, as in
apy a2 as
D=\ay ap axs 9.2)
@1 a4z a4z
Although the determinant D and the coefficient matrix [A] are composed of the same ele-
ments, they are completely different mathematical concepts. That is why they are distin-
guished visually by using brackets to enclose the matrix and straight lines to enclose the

determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the second-order determinant

apy a
D= |41 o
a1 ax
is calculated by
D = apay — anan . : 9.3)

For the third-order case [Eq. (9.2)], a single numerical value for the determinant can be
computed as

ayy a3 a1 an ast ax
D =ay —ap +a 94

3
azy asz asy asy as

where the 2 by 2 determinants are called minors.

H
|

Problem Statement. Compute values for the determinants of the systems represented in
Figs. 9.1 and 9.2.

Solution. For Fig. 9.1:

32
-1 2

D=| |=3(2)—2(—1)=8

9.1 _SOLVING SMALL NUMBERS OF EQUATIONS

EXAMPLE 9.3

235
For Fig. 9.2a:
-1/2 1 -1 -1
D= =_m_1{ZL)_
-1/2 1, 2 M 1(2) 0
For Fig. 9.2b:
12 1] -1
D= =) = 1(-1) =
O 2] 7@ -1 =0
For Fig. 9.2¢:
-1/2 1 -1 —2.3
D= =-—1)-1{—==)=—0.
-2.3/5 1! 2 M 1< 5) 0.04

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 9.2¢) has a determinant that
is close to zero. These ideas will be pursued further in our subsequent discussion of ill-
conditioning (Sec. 9.3.3).

Cramer’s Rule. This rule states that each unknown in a system of linear algebraic equa-

tions may be expressed as a fraction of two determinants with denominator D and with the
numerator obtained from D by replacing the column of coefficients of the unknown in
question by the constants by, b, . . . , b,. For example, x; would be computed as

by anx a3

by ayn axp

by an ax

= ©.5)

Cramer’s Rule
Problem Statement. Use Cramer’s rule to solve

0.3x; +0.52x; + x3 = —0.01
0.5x1 + x2 + 1.9x3 = 0.67
0.1x; 4+ 0.3x; + 0.5x3 = —0.44

Solution. The determinant D can be written as [Eq. (9.2)]

03 052 1
D=[05 1 19
0.1 03 05
The minors are [Eq. (9.3)]
1= 0%3 (1)3‘ = 1(0.5) — 1.9(0.3) = -0.07
05 1.9

= = 0.5(0.5) — 1.9(0.1) = 0.06
2\&10J 0-50.3 O

GAUSS ELIMINATION

05 1

0.1 03 l = 0.5(0.3) - 1(0.1) = 0.05

-

These can be used to evaluate the determinant, as in [Eq. 9.4)]
D = 0.3(=0.07) — 0.52(0.06) + 1(0.05) = -0.0022
Applying Eq. (9.5), the solution is

001 052 1
067 1 19
_044 03 05| 0.03278
- - - 14
i 20.0022 ~ooom = 4
03 —0.01 1
05 067 1.9
01 —044 05| 0.0649
= ~0.0022 = —oo0m = 23
03 052 —0.01
05 1 067
01 03 -044| —0.04356

—0.0022 —0.0022

For more than three equations, Cramer’s rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
(or by computer). Consequently, more efficient alternatives are used. Some of these alter-
natives are based on the last noncomputer solution technique covered in the next section—

the elimination of unknowns.

9.1.3 The Elimination of Unknowns
The elimination of unknowns by combining equations is an algebraic approach that can be
illustrated for a set of two equations:
a1 Xy + ax2 = by
anxy +anxy =bs.

The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result is a single equatio?
that can be solved for the remaining unknown. This value can then be substituted int

either of the original equations to compute the other variable.
For example, Eq. (9.6) might be multiplied by as; and Eq. (9.7) by ay; to give

ajanx; + a2a21%2 = biai

apianx1 + apanx: = ban

9.7)

¥ns

ion

nto

9.1 SOLVING SMALL NUMBERS OF EQUATIONS

the B¥ -

EXAMPLE 9.4

237

Subtracting Eq. (9.8) from E

q. (9.9) will, therefore, eliminate the X1 term from the equa-
tions to yield

922011%; = anay x; = byayy — biay;
which can be solved for

_ auby —ay b
anay — apdan i . (9.10)
Equation (9.10) can then be substituted into Eq. (9.6), which can be solved for
anby — apb; |
@114 — apay ‘ 0.11)

X =

Notice that Egs. (9.10) and (9.11) follow directly from Cramer’s rule, which states

by ap
_ 102 an| ban-—apb,
= ain ap h aijlax — apay;
a1 axn
an by
_ 191 b| ayb—bay
2= Tan an] a11az, — aay
a1 ax

Elimination of Unknowns ,
Problem Statement. Use the elimination of unknowns to solve (recall Example 9.1)
3x; +2x, =18 ’
—X1+2x =2
Solution. Using Egs. (9.11) and (9.10),
_208)-20)
SR To) p v
_ 3@ - (=118 _
' 3@ -20-n

which is consistent with our graphical solution (Fig. 9.1).

The elimination of unknowns can be extended to systems with more than two or three
equations. However, the numerous calculations that are required for larger systems make
the method extremely tedious to implement by hand. However, as described in the next
section, the technique can be formalized and readily programmed for the computer.

GAUSS ELIMINATION

9.2

NAIVE GAUSS ELIMINATION

In the previous section, the elimination of unknowns was used to solve a pair of simuita- -
neous equations. The procedure consisted of two steps: ‘

1. The equations were manipulated to eliminate one of the unknowns from the equations.
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted
into one of the original equations to solve for the remaining unknown.

This basic approach can be extended to large sets of equations by developing a sys-
tematic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimi-
nation is the most basic of these schemes.

This section includes the systematic techniques for forward elimination and back sub-
stitution that comprise Gauss elimination. Although these techniques are ideally suited for
implementation on computers, some modifications will be required to obtain a reliable al-
gorithm. In particular, the computer program must avoid division by zero. The following
method is called “naive” Gauss elimination because it does not avoid this problem. Sub-
sequent sections will deal with the additional features required for an effective computer
program.

The approach is designed to solve a general set of n equations:

a1 x1 +anxy +axz + -+ ¥y = b1 (9.12a)
A1Xx1 + axnxy -+ anxs + -+ AwmXy = by : (9.12b)
Ap1X1 + AnaXz + p3X3 + - -+ + GppXn = by (9.12¢)

As was the case with the solution of two equations, the technique for n equations consists
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig. 9.3). The initial step will be to eliminate the
first unknown, x;, from the second through the nth equations. To do this, multiply
Eq (91261) by (,121/(111 to give
anxy + R TR B inn = 2y, . (9.13)
aiy ‘ apy an

Now, this equation can be subtracted from Eq. (9.12b) to give

a1 azi asl
(6122 ———apjx+--+ (aZn - ——aln>xn =by — by
arn ari al

or
G b+ gt = By
where the prime indicates that the elements have been changed from their original value

The procedure is then repeated for the remaining equations. For instance, Eq. (9.1?‘1
can be multiplied by as1/a1; and the result subtracted from the third equation. Repeatil

12¢)

1sists

et of
e the

ltiply

(9.13)

" hgtion: forward elimination and

9.2 NAIVE GAUSS ELIMINATION 239

FIGURE 9.3
The two phases of Gauss elimi-

back substifution. The primes
indicate the number of times
that the coefficients and
constants have been modified.

the procedure for the remaining equations results in the following modified system:

apxy +apx; + aixs + -+ ax, = by (9.14q)
X + Gyxy + - + ay,x, = bl (9.14b)
UpX2 + AypXs + - + a4, X, = bl ' (9.14¢)
Xy + Ay + -+ al,x, = b (9.14d)

For the foregoing steps, Eq. (9.12a) is called the pivor equation and ay; is called the pivot
coefficient or element. Note that the process of multiplying the first row by ay(/ay; is
equivalent to dividing it by ¢;; and multiplying it by a,;. Sometimes the division operation

is referred to as normalization. We make this distinction because a zero pivot element can

interfere with normalization by causing a division by zero. We will return to this important
issue after we complete our description of naive Gauss elimination.

Now repeat the above to eliminate the second unknown from Eq. (9.14¢) through
(9.14d). To do this multiply Eq. (9.14b) by a3, /a’, and subtract the result from Eq. (9.14¢).
Perform a similar elimination for the remaining equations to yield

anxi +apx + aizxz + -+ apx, = by

apxz + ayX3 ko X = b))
ag/3x3+...+agnxn=b/3/ .

" " o
Ap3X3 + oy, Xy = bn

where the double prime indicates that the elements have been modified twice.

240

GAUSS ELIMINATION

The procedure can be continued using the remaining pivot equations. The final ma-
nipulation in the sequence is to use the (n — 1)th equation to eliminate the x,—; term from
the nth equation. At this point, the system will have been transformed to an upper triangu-
lar system (recall Box PT3.1):

anxi + apxy + apsxs + - -+ aXn = by (9.15q)
dypxo + dyyxy + o+ F g Xy =) (9.15b)
apxs + -+ ay, Xy = by (9.15¢)

al"Vx, = b7V 9.15d)

Pseudocode to implement forward elimination is presented in Fig. 9.4a. Notice that
three nested loops provide a concise representation of the process. The outer loop moves
down the matrix from one pivot row to the next. The middle Joop moves below the pivot
row to each of the subsequent rows where elimination is to take place. Finally, the inner-
most loop progresses across the columns to eliminate or transform the elements of a par-

ticular row.
Back Substitution. Equation (9.15d) can now be solved for x,:

_ br(1n—1)

nT (n=1)
nn

X, 9.16)

This result can be back-substituted into the (n — I)th equation to solve for x,,—;. The proce-
dure, which is repeated to evaluate the remaining x’s, can be represented by the following ",

FIGURE 9.4

Pseudocode to perform (a) for-
ward elimination and (b} back
substitution.

(@) D0k=1 n-1
T pi=k+1,n
factor = aix / ak i
D0 j=k+1ton 3
aj,; = ajj — factor - ay;j

END DO
b; = by — ‘factor « bk
END DO
END DO
(b) Xp = bn / ann
ppi=n-1,1, -1
sum =0

poj=1i+1,n
sum = sum + daj,j* Xj
END DO
x; = (b; — sum) [/ aj;
END DO

9.2 NAIVE GAUSS ELMINATION 241

EXAMPLE 9.5

formula:

n
(-1 2 : (i-1
bi - aij Xj

j=irl
-0

ii

X = fori=n—-1,n-2,...,1 0.17)

a

Pseudocode to implement Egs. (9.16) and (9.17) is presented in Fig. 9.4b. Notice the
similarity between this pseudocode and that in Fig. PT3.4 for matrix multiplication. As
with Fig. PT3.4, a temporary variable, sum, is used to accumulate the summation from
Eq. (9.17). This results ira somewhat faster execution time than if the summation were ac-
cumulated in ;. More importantly, it allows efficient improvement in precision if the vari-
able, sum, is declared in double precision.

Naive Gauss Elimination

Problem Statement. Use Gauss elimination to solve

3x; — 0.1x; — 0.2x3 = 7.85 ' (E9.5.1)
0.1x; + 7x2 — 0.3x3 = —19.3 (E9.5.2)
0.3x; — 0.2x3 + 10x3 = 71.4 (E9.5.3)

Carry six significant figures during the computation.

Solution. The first part of the procedure is forward elimination. Multiply Eq. (E9.5.1) by
(0.1)/3 and subtract the result from Eq. (E9.5.2) to give

7.00333x, — 0.293333x3 = —19.5617

Then multiply Eq. (E9.5.1) by (0.3)/3 and subtract it from Eq. (B9.5.3) to eliminate x;.
After these operations, the set of equations is

3xy —0.1x, —0.2x3 =7.85 (E9.5.4)
7.00333x; — O.293333x3 = —19.5617 (E9.5.5)
—0.190000x, + 10.0200x3 = 70.6150 ‘ (E9.5.6)

To complete the forward elimination, x, must be removed from Eq. (E9.5.6). To accom-
plish this, multiply Eq. (E9.5.5) by —0.190000/7.00333 and subtract the result from
Eq. (9.5.6). This eliminates x; from the third equation and reduces the system to an upper
triangular form, as in

3% —0.1x; ~0.2x3 =7.85 - (E9.5.7)
7.00333x; — 0.293333x3 = —19.5617 (E9.5.8)
10.0200x; = 70.0843 (E9.5.9)

We can now solve these equations by back substitution. First, Eq. (E9.5.9) can be solved
for

L. _ 700843
>~ 10.0200

= 7.00003 (E9.5.10)

GAUSS ELIMINATION

This result can be back-substituted into Eq. (E9.5.8):
7.00333x, — 0.293333(7.00003) = —19.56717
which can be solved for

4, 1956174 0.2933337.00003) _
2= 7.00333 =4 . E9.5.11)-

Finally, Eqgs. (E9.5.10) and (E9.5.11) can be substituted into Eq. (E9.5.4):
3x; — 0.1(~2.50000) — 0.2(7.00003) = 7.85

which can be solved for

_7.85+0.1(—2.50000) + 0.2(7.00003)
- 3

= 3.00000

X1

Although there is a slight round-off error in Eq. (E9.5.10), the results are very close to the
exact solution of x; = 3, x, = —2.5, and x3 = 7. This can be verified by substituting the
results into the original equation set
3(3) — 0.1(—2.5) — 0.2(7.00003) = 7.84999 = 7.85
0.1(3) + 7(—2.5) — 0.3(7.00003) = ~19.3000 = —19.3
0.3(3) ~ 0.2(—2.5) + 10(7.00003) = 71.4003 = 71.4

9.2.1 Operation Counting

The execution time of Gauss elimination depends on the amount of floating-point operd.
tions (or FLOPs) involved in the algorithm. In general, the time consumed to perform,
multiplications and divisions is about the same, and is larger than for additions and SUb';

tractions.
Before analyzing naive Gauss elimination, we will first define some quantities th

facilitate operation counting:

2Cf(i)=cgf(i) g:lf(i)+g(i)=gf(i)+gg(i) (9.18a
3 1=1+1+-~-I.—l=m‘ il:m—kﬁ-l (9.1?67111
i=1 i=k
Xm:i=1+2+3+---+m=ﬂmz—+2=m72+0(m)

i=1

ii2=12+22+32+~-+m2=m(m+1)5(2m+1)=n-§—3+0<m2) .18

i=]
where O(m") means “terms of order m” and lower.”
Now let us examine the naive Gauss elimination algorithm in detail. As in Fig. 9_.4"»,
will first count the multiplication/division FLOPs in the elimination stage. On the firstP

9.2 NAIVE GAUSS ELIMINATION

243

through the outer loop, k

= 1. Therefore, the limits on the middle loop are from i = 2 to n.
According to Eq. (9.184),

this means that the number of iterations of the middle loop will be
n
Dl=n-2+1=n-1 9.19)
i=2

Now for every one of these iterations, there
terior loop then performs a single multiplic
to n. Finally, there is one additional multipl
Thus, for every iteration of the middle loo

I+[n=2+4+114+1=14n (9.20)

The total for the first pass through the outer loop is therefore obtained by multiplying
Eq. (9.19) by (9.20) to give [n — 11(1 + n).

A similar procedure can be used to estimate the multiply/divide FLOPs for the subse-

is 1 division to define factor = @i/ The in-
ation (factor - a, j) for each iteration from j=2
ication of the right-hand-side value (factor - by).
P, the number of multiplications is

quent iterations of the outer loop. These can be summarized as
Outer Loop Middle Loop
k i FLOPs
[2,n [n=T1)1 +n)
2 3,0 [n = 2](n)
k k+1,n [n—Kin+2 =4

e o (1)

Therefore, the total FLOPs for elimination can be computed as

n—-1 n—1 ’
Z n—kln+2—k) = Z{n(n +2) —k(Q2n+2) + k%) (9.21)
k=1 ' k=1

Applying some of the relationships from Eq. (9.18) yields
2 3 2 2n’ 2 n’ 2
(7’ + 0} — {(n® + O} + —6——+0(n) =?+0(n) (9.22)

Thus, the total number of multiply/divide FLOPs is equal to n3/3 plus an additional com-
ponent proportional to terms of order #2 and lower. The result is written in this way because
as n gets large, the O(n?) terms become negligible. We are therefore justified in concluding
that for large », the effort involved in forward elimination is n3/3.

Because only a single loop is used, back substitution is much simpler to evaluate. The
number of multiplication FLOPs can be directly taken from Eq. (9.18e),

n

+1 n?
Zi=l+2+3+~--+n=ﬂ'%__)=7+0(n)
i=1

GAUSS ELIMINATION

9.3

TABLE 9.1 Number of FLOPs for naive Gauss elimination.

Back Total Percent Due
n Elimination Substitution FLOPs n®/3 to Elimination

10 375 55 430 333 87.21%
100 338250 5050 343300 333333 98.53%
1000 3.34E+08 500500 3.34 x 108 3.33 x 108 99.85%

Thus, the total effort in naive Gauss elimination can be represented as

n’ n? : n’
___3___ + 0(712) + _é_ + O(n) as n_increases _3_ + 0(”2) (923)

Forward Back
elimination substitution

Two useful general conclusions can be drawn from this analysis:

1. As the system gets larger, the computation time increases greatly. As in Table 9.1, the .
amount of FLOPs increases nearly 3 orders of magnitude for every order of magnitude
increase in the dimension.

2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method
more efficient should probably focus on this step.

Throughout the remainder of this part, we will make operation counts to compare al-
ternative solution methods. Although we may not go into the detail of the above analysis, 3
the same general approach will be employed. .

PITFALLS OF ELIMINATION METHODS

Whereas there are many systems of equations that can be solved with naive Gauss elimi-
nation, there are some pitfalls that must be explored before writing a general computer pro-
gram to implement the method. Although the following material relates directly to naive
Gauss elimination, the information is relevant for other elimination techniques as well.

9.3.1 Division by Zero

The primary reason that the foregoing technique is called “naive” is that during both the
elimination and the back-substitution phases, it is possible that a division by zero can o
occur. For example, if we use naive Gauss elimination to solve '

2x7 +3x3 =8

4x; 4+ 637 + Tx3 = =3
2xi+x2+6x3=35

the normalization of the first row would involve division by a1 = 0. Problems also ©

arise when a coefficient is very close to zero. The technique of pivoting has been develop!
to partially avoid these problems. It will be described in Sec. 9.4.2.

9.3 PITFALLS OF ELIMINATION METHODS 245

mt-

EXAMPLE 9.6

9.3.2 Round-Off Errors

Even though the solution in Example 9.5 was close to the true answer, there was a slight
discrepancy in the result for x5 [Eq. (E9.5.10)]. This discrepancy, which amounted to a rel-
ative error of —0.00043 percent, was due to our use of six significant figures during the
computation. If we had used more significant figures, the error in the results would be re-
duced further. If we had used fractions instead of decimals (and consequently avoided
round-off altogether), the answers would have been exact. However, because computers
carry only a limited number of significant figures (recall Sec. 3.4.1), round-off errors carn

+ occur and must be considered when evaluating the results.

The problem of round-off error can become particularly important when large num-
bers of equations are to be solved. This is due to the fact that every result is dependent on
previous results. Consequently, an error in the early steps will tend to propagate-—that is, it
will cause errors in subsequent steps.

Specifying the system size where round-off error becomes significant is complicated
by the fact that the type of computer and the properties of the equations are determining
factors. A rough rule of thumb is that round-off error may be important when dealing with
100 or more equations. In any event, you should always substitute your answers back into
the original equations to check whether a substantial error has occurred. However, as dis-
cussed below, the magnitudes of the coefficients themselves can influence whether such an

error check ensures a reliable result.

9.3.3 lli-Conditioned Systems

The adequacy of the solution depends on the condition of the system. In Sec. 9.1.1, a graph-
ical depiction of system condition was developed. As discussed in Sec. 4.2.3, well-
conditioned systems are those where a small change in one or more of the coefficients results
in a similar small change in the solution. Ill-conditioned systems are those where small
changes in coefficients result in Jarge changes in the solution. An alternative interpretation
of ill-conditioning is that a wide range of answers can approximately satisfy the equaﬁons.
Because round-off errors can induce small changes in the coefficients, these artificial
changes can lead to large solution errors for ill-conditioned systems, as illustrated in the

following example.

lil-Conditioned Systems

Problem Statement. Solve the following system:
x1 +2x, =10 (E9.6.1)
1.1x; + 2x, = 104 (E9.6.2)

Then, solve it again, but with the coefficient of x; in the second equation modified slightly
to 1.05.

Solution. Using Egs. (9.10) and (9.11), the solution is

2(10) — 2(10.4) .

=Ty -2

246

GAUSS ELIMINATION

_ 1(10.4) — 1.1(10) _
12)—-2(1.1)
However, with the slight change of the coefficient a,; from 1.1 to 1.05, the result is
changed dramatically to
= 2(10) — 2(10.4) _
YT - 2005 T
= 1(10.4) — 1.1(10) _
2T I —2(1.05)

Notice that the primary reason for the discrepancy between the two results is that the
denominator represents the difference of two almost-equal numbers. As illustrated previ-
ously in Sec. 3.4.2, such differences are highly sensitive to slight variations in the numbers
being manipulated.

At this point, you might suggest that substitution of the results into the original equa-
tions would alert you to the problem. Unfortunately, for ill-conditioned systems this is often
not the case. Substitution of the erroneous values of x; = 8 and x, = 1 into Egs. (E9.6.1)
and (E9.6.2) yields

8+2(1)=10=10
1.18) +2(1) = 10.8§ =104

Therefore, although x; = 8 and x, == 1 is not the true solution to the original problem, the
error check is close enough to possibly mislead you into believing that your solutions are
adequate.

As was done previously in the section on graphical methods, a visual representative of
ill-conditioning can be developed by plotting Eqs. (E9.6.1) and (E9.6.2) (recall Fig. 9.2).
Because the slopes of the lines are almost equal, it is visually difficult to see exactly where
they intersect. This visual difficulty is reflected quantitatively in the nebulous results of
Example 9.6. We can mathematically characterize this situation by writing the two equa-
tions in general form:

(9.24)

anxi + anx2 = b
9.25)

az1x1 + anx; = by

Dividing Eq. (9.24) by a;, and Eq. (9.25) by a,; and rearranging yields alternative versions
that are in the format of straight lines [x; = (slope) x; 4 intercept]:

a by i
Xy = ———Xx) 4+ —
ap ap
as1 by
Xp = ——Xx1 + —
an an

Consequently, if the slopes are nearly equal,

air . 421

a an

| that the

[«d previ-

sis often’

>lem, the
] tions are

wo equa-

numbers -
1al equa-

(B9.6:1)

-esults of

s VETSiONs;

$.3 PITFALLS OF ELIMINATION METHODS 247

EXAMPLE 9.7

or, cross-multiplying,
ayaxn = ana
which can be also expressed as
anaz — apay =0 . (926)

Now, recalling that ajjaz — a12621 is the determinant of a two-dimensional system
[Eq. (9.3)], we arrive at the general conclusion that an ill-conditioned system is one with a
determinant close to zero. In fact, if the determinant is exactly zero, the two slopes are iden-
tical, which connotes either no solution or an infinite number of solutions, as is the case for

the singular systems depicted in Fig. 9.2a and b.

It is difficult to specify how close to zero the determinant must be to indicate ill-
conditioning. This is complicated by the fact that the determinant can be changed by mul-
tiplying one or more of the equations by a scale factor without changing the solution. Con-
sequently, the determinant is a relative value that is influenced by the magnitude of the

coefficients.
Effect of Scale on the Determinant
Problem Statement. Evaluate the determinant of the following systems:

(a) From Example 9.1:

3x1 + 2%, = 18 (E9.7.1)
—X1+2x =2 ‘ (£9.7.2)

"(b) From Example 9.6:

X1+ 2x0 = 10 (E9.7.3)
1.1x; + 2x, = 10.4 (E9.7.4)

(¢) Repeat (b) but with the equations multiplied by 10.

Solution. ‘

(a) The determinant of Egs. (E9.7.1) and (E9.7.2), which are well-conditioned, is
D=32)-2(-1)=8

(b) The determinant of Egs. (E9.7.3) and (E9.7.4), which are ill-conditioned, is
D=12)-2(1.1)=-02

(¢) The results of (@) and (b) seem to bear out the contention that ill-conditioned systems
have near-zero determinants. However, suppose that the ill-conditioned system in
(b) is multiplied by 10 to give
10x1 + 20.7C2 = 100
11x1 + 20x2 =104

The multiplication of an equation by a constant has no effect on its solution. In
addition, it is still ill-conditioned. This can be verified by the fact that multiplying by a

GAUSS ELIMINATION

constant has no effect on the graphical solution. However, the determinant is dramat.
ically affected:

D =10(20) — 20(11) = —20

Not only has it been raised two orders of magnitude, but it is now over twice as large
as the determinant of the well-conditioned system in (a).

EXAMPLE 9.8

As illustrated by the previous example, the magnitude of the coefficients interjects a
scale effect that complicates the relationship between system condition and determinant
size. One way to partially circumvent this difficulty is to scale the equations so that the
maximum element in any row is equal to 1.

Scaling

Problem Statement. Scale the systems of equations in Example 9.7 to a maximum value .
of 1 and recompute their determinants.

Solution.
(a) For the well-conditioned system, scaling results in

x1 4+ 0.667x3 =6
—0.5x; + X =1

for which the determinant is
D = 1(1) - 0.667(-0.5) = 1.333
(b) For the ill-conditioned system, scaling gives

0.5x14+x=35
0.55x1 +X2 =52

for which the determinant is
D = 0.5(1) — 1(0.55) = —-0.05

(¢) For the last case, scaling changes the system to the same form as in (b) and the
determinant is also —0.05. Thus, the scale effect is removed.

In a previous section (Sec. 9.1.2), we suggested that the determinant is difficult t
compute for more than three simultaneous equations. Therefore, it might seem that it dO?S,
not provide a practical means for evaluating system condition. However, as described i
Box 9.1, there is a simple algorithm that results from Gauss elimination that can be used t0:
evaluate the determinant. ‘

Aside from the approach used in the previous example, there are a variety of other ways’
to evaluate system condition. For example, there are alternative methods for normalizing th
elements (see Stark, 1970). In addition, as described in the next chapter (Sec. 10.3), the m
trix inverse and matrix norms can be employed to evaluate system condition. Finally,
simple (but time-consuming) test is to modify the coefficients slightly and repeat th

9.3 _PITFALLS OF ELIMINATION METHODS

249

In Sec. 9.1.2, we stated that determinant evaluation by expansion of
minors was impractical for large sets of equations. Thus, we con-
- cluded that Cramer’s rule would be applicable only to small sys-
tems. However, as mentioned in Sec. 9.3.3, the determinant has
value in assessing system condition. It would, therefore, be useful
to have a practical method for computing this quantity.

Fortunately, Gauss elimination provides a simple way to do this.
< - The method is based on the fact that the determinant of a trian-

B Box 9'! Nl?efgrm‘ir}qn‘f Evcxluaﬁqn Using Gauss Elimination

Recall that the forward-elimination step of Gauss elimination
results in an upper triangular system. Because the value of the de-
terminant is not changed by the forward-elimination process, the
determinant can be simply evaluated at the end of this step via

D =ayapafy - a®V (89.1.2)

where the superscripts signify the number of times that the ele-

gular matrix can be simply computed as the product of its diagonal

elements:

D =anapas ---

value a4 ap
D=0 axn ay
0 0 ass

Qnn

~ The validity of this formulation can be illustrated for a 3 by 3 system:

ments have been modified by the elimination process. Thus, we can
capitalize on the effort that has already been expended in reducing
the system to triangular form and, in the bargain, come up with a
simple estimate of the determinant.

There is a slight modification to the above approach when the
program employs partial pivoting (Sec. 9.4.2). For this case, the de-
terminant changes sign every time a row is pivoted. One way to
represent this is to modify Eq. (B9.1.2):. '

(B9.1.1)

D =ayapdyy - a "V (=1)? (B9.1.3)

where the determinant can be evaluated as [recall Eq. (9.4)]

D=a11

an

0

azn
asz

12‘

or, by evaluating the minors (that is, the 2 by 2 determinants),

0 as

0

asz

where p represents the number of times that rows are pivoted.
This modification can be incorporated simply into a program;
merely keep track of the number of pivots that take place during the
course of the computation and then use Eq. (B9.1.3) to evaluate the
determinant.

0 an

“Blo o

D = an1a033 — a12(0) + a13(0) = ayaxa3

solution. If such modifications lead to drastically different results, the system is likely to be
ill-conditioned. '

As you might gather from the foregoing discussion, ill-conditioned systems are prob-
lematic. Fortunately, most. linear algebraic equations derived from engineering-problem
settings are naturally well-conditioned. In addition, some of the techniques outlined in
Sec. 9.4 help to alleviate the problem.

9.3.4 Singular Systems

In the previous section, we learned that one way in which a system of equations can be ill-
conditioned is when two or more of the equations are nearly identical. Obviously, it is even
worse when the two are identical. In such cases, we would lose one degree of freedom, and
would be dealing with the impossible case of n — 1 equations with » unknowns. Such cases
might not be obvious to you, particularly when dealing with large equation sets. Conse-
quently, it would be nice to have some way of automatically detecting singularity.

The answer to this problem is neatly offered by the fact that the determinant of a sin-
gular system is zero. This idea can, in turn, be connected to Gauss elimination by recog-
nizing that after the elimination step, the determinant can be evaluated as the product of the
diagonal elements (recall Box 9.1). Thus, a computer algorithm can test to discern whether
a zero diagonal element is created during the elimination stage. If one is discovered, the
calculation can be immediately terminated and a message displayed alerting the user. We

GAUSS ELIMINATION

EXAMPLE 9.9

will show the details of how this is done when we present a full algorithm for Gauss elim-
ination later in this chapter.

TECHNIQUES FOR IMPROVING SOLUTIONS

The following techniques can be incorporated into the naive Gauss elimination algorithm
to circumvent some of the pitfalls discussed in the previous section.

9.4.1 Use of More Significant Figures

The simplest remedy for ill-conditioning is to use more significant figures in the computa-
tion. If your application can be extended to handle larger word size, such a feature will
greatly reduce the problem. However, a price must be paid in the form of the computational
and memory overhead connected with using extended precision (recall Sec. 3.4.1).

9.4.2 Pivoting

As mentioned at the beginning of Sec. 9.3, obvious problems occur when a pivot element
is zero because the normalization step leads to division by zero. Problems may also arise
when the pivot element is close to, rather than exactly equal to, zero because if the magni-
tude of the pivot element is small compared to the other elements, then round-off errors can
be introduced.

Therefore, before each row is normalized, it is advantageous to determine the largest
available coefficient in the column below the pivot element. The rows can then be switched -
so that the largest element is the pivot element. This is called partial pivoting. If columns
as well as rows are searched for the largest element and then switched, the procedure is
called complete pivoting. Complete pivoting is rarely used because switching columns
changes the order of the x’s and, consequently, adds significant and usually unjustified
complexity to the computer program. The following example illustrates the advantages of
partial pivoting. Aside from avoiding division by zero, pivoting also minimizes round-off
error. As such, it also serves as a partial remedy for ill-conditioning.

Partial Pivoting

Problem Statement. Use Gauss elimination to solve

0.0003x; + 3.0000x, = 2.0001
1.0000x; + 1.0000x, = 1.0000

Note that in this form the first pivot element, a;; = 0.0003, is very close to zero. Then
repeat the computation, but partial pivot by reversing the order of the equations. The exact
solution is x; = 1/3 and x, = 2/3.

Solution. Multiplying the first equation by 1/(0.0003) yields
x1 + 10,000x, = 6667
which can be used to eliminate x; from the second equation:

—9999x, = —6666

9.4 TECHN!QUES FOR IMPROVING SOLUTIONS 251

which can be solved for
Xy = é-

This result can be substituted back into the first equation to evaluate x;:

_2.0001 —3(2/3)

~0.0003

However, due to subtractive cancellation, the result is very sensitive to the number of sig-
nificant figures carried in the computation:

X1 (E9.9.1)

Absolute Value
of Percent
Significant Relative Error

Figures X2) Xy for x;

3 0.667 -3.33 1099

4 0.6667 0.0000 100

5 0.66667 0.30000 ‘ 10

6 0.666667 0.330000 1

7 0.6666667 0.3330000 0.1

Note how the solution for x; is highly dependent on the number of significant figures. This
is because in Eq. (E9.9.1), we are subtracting two almost-equal numbers. On the other
hand, if the equations are solved in reverse order, the row with the larger pivot element is
normalized. The equations are

1.0000x; + 1.0000x; = 1.0000

0.0003x; + 3.0000x; = 2.0001

Elimination and substitution yield x, = 2/3. For different numbers of signifiéant figures, x;
can be computed from the first equation, as in

1—(2/3)
X = —"
! 1
This case is much less sensitive to the number of significant figures in the computation:

" (E9.9.2)

Absolute Value
of Percent
Significant Relative Error
Figures X3 : xq for xi
3 0.667 0.333 0.1
4 0.6667 0.3333 0.01
5 0.66667 0.33333 0.001
o} 0.666667 0.333333 0.0001
7 0.6666667 0.3333333 0.00001

Thus, a pivot strategy is much more satisfactory.

252

_ GAUSS ELIMINATION

p=k
b7’g = |ak,k|
DO ii = k+1, n

dummy = |a;,i|

IF (dummy > big)
big = dummy
p=1i

END IF

END DO
IF (p # k)

00 jj =k, n
dummy = ap,j;
p.gj = s
ax,g; = dummy

END DO

dummy = by,

by = by

b = dummy

END IF

FIGURE 9.5
Pseudocode fo implement par-
fial pivoting.

1l

EXAMPLE 9.10

General-purpose computer programs must include a pivot strategy. Figure 9.5 pro-
vides a simple algorithm to implement such a strategy. Notice that the algorithm consists
of two major loops. After storing the current pivot element and its row number as the vari-
ables, big and p, the first loop compares the pivot element with the elements below it to
check whether any of these is larger than the pivot element. If so, the new largest element
and its row number are stored in big and p. Then, the second loop switches the original
pivot row with the one with the largest element so that the latter becomes the new pivot
row. This pseudocode can be integrated into a program based on the other elements of
Gauss elimination outlined in Fig. 9.4. The best way to do this is to employ a modular ap-
proach and write Fig. 9.5 as a subroutine (or procedure) that would be called directly after
the beginning of the first loop in Fig. 9.4a.

Note that the second IF/THEN construct in Fig. 9.5 physically interchanges the rows.
For large matrices, this can become quite time consuming. Consequently, most codes do

not actually exchange rows but rather keep track of the pivot rows by storing the appropri-

ate subscripts in a vector. This vector then provides a basis for specifying the proper row
ordering during the forward-elimination and back-substitution operations. Thus, the oper-
ations are said to be implemented in place. ‘

9.4.3 Scaling

In Sec. 9.3.3, we proposed that scaling had value in standardizing the size of the deter-
minant. Beyond this application, it has utility in minimizing round-off errors for those
cases where some of the equations in a system have much larger coefficients than others.
Such situations are frequently encountered in engineering practice when widely different
units are used in the development of simultaneous equations. For instance, in electric-
circuit problems, the unknown voltages can be expressed in units ranging from microvolts
to kilovolts. Similar examples can arise in all fields of engineering. As long as each
equation is consistent, the system will be technically correct and solvable. However, the
use of widely differing units can lead to coefficients of widely differing magnitudes. This,

in turn, can have an impact on round-off error as it affects pivoting, as illustrated by the -

following example.

Effect of Scaling on Pivoting and Round-Off
Problem Statement.
(a) Solve the following set of equations using Gauss elimination and a pivoting strategy:

2x1 + 100,000x, = 100,000
x1 + Xy =2

(b) Repeat the solution after scaling the equations so that the maximum coefficient in each
row is 1. :

(c) Finally, use the scaled coefficients to determine whether pivoting is necessary:
However, actually solve the equations with the original coefficient values. For all
cases, retain only three significant figures. Note that the correct answers are X
1.00002 and x; = 0.99998 or, for three significant figures, x; = x = 1.00.

9.4 TECHNIQUES FOR IMPROVING SOLUTIONS 253

Solution.

(a) Without scaling, forward elimination is applied to give

(b)

(©

2x; + 100,000x, = 100,000
—50,000x; = —50,000

which can be solved by back substitution for

X2 = 1.00
x1 =0.00

Although x; is correct, x; is 100 percent in error because of round-off.
Scaling transforms the original equations to

0.00002)61 +x =1
X14+x=2

Therefore, the rows should be pivoted to put the greatest value on the diagonal.

X1+ x =2
0.00002x; +x, =1

Forward elimination yields

Xt +x =2
x2=1.00

which can be solved for
X1 =X = 1

Thus, scaling leads to the correct answer.
The scaled coefficients indicate that pivoting is necessary. We therefore pivot but
retain the original coefficients to give

X1+ Xy =2
2x; + 100,000x, = 100,000

Forward elimination yields

Xy + Xy =2
100,000x, = 100,000
which can be solved for the correct answer: x; = x; = 1. Thus, scaling was useful in

determining whether pivoting was necessary, but the equations themselves did not
require scaling to arrive at a correct result.

i
i

254 GAUSS ELIMINATION

SUB Gauss (a, b, n, x, tol, er)
DIMENSION s (n)
er=(0
D0i=1,n
‘ S; = ABS(a,;l)
D0Oj=2,n .
IF ABS(a;,;)>si THEN s; = ABS(aj;)
END DO
END DO
CALL Eliminate(a, s, n, b, tol, er)
IF er # —1 THEN
CALL Substitute(a, n, b, x)
END IF
END Gauss

SUB Eliminate (a, s, n, b, tol, er)
D0k=1 n-1
CALL Pivot (a, b, s, n, k)
IF-ABS (ak i/ sk) < tol THEN
er = —1 :
EXIT DO
END IF
D0i=k+1,n -
factor = a;x/akk
DDj=k+1,n
ai,j = aj,j — factor*ay;
END DO
by = by — factor * by
END DO
END DO
IF ABS(ay/sx) < tol. THEN er = —1
END Eliminate

FIGURE 9.6 i ,
Pseudocode to implement Gauss elimination with partial pivofing.

SUB Pivot (a, b, s, n, k)

p = k 5 .

big = ABS(ay i/ Sk)

00 ii=k+ 1, n
dummy = ABS(a;i /Sti)
IF dummy > big THEN

big = dummy
p =17
END IF.
END DO
IF p # k THEN
Do jj =k, n
dummy = ap, s
3p.gj = Akdi
ak,jj = dUITlITU/
END DO
dummy = bp
bp = bx
by = dummy
dummy = $p
Sp = Sk
S = dummy
END IF
END pivot

SUB Substitute (a, n, b, x)
Xo = b/ ann
D0i=n~-1 1, -1

sum =0
Doj=1i+1,n
sum = sum + as; * Xj
END DO
Xxi = (by — sum) / aj;
END DO
END Substitute

e

