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ABSTRACT 

Although magnetic resonance imaging (MRI) is routinely used in clinical practice, long acquisition times 

limit its practical utility in many applications. To increase the data acquisition speed of MRI, parallel MRI 

(pMRI) techniques have recently been proposed. These techniques utilize multi-channel receiver arrays and 

are based on simultaneous acquisition of data from multiple receiver coils. Recently, a novel framework 

called Compressed Sensing (CS) was introduced. Since this new framework illustrates how signals can be 

reconstructed from much fewer samples than suggested by the Nyquist theory, it has the potential to 

significantly accelerate data acquisition in MRI. This paper illustrates that CS and pMRI techniques can be 

combined and such joint processing yields results that are superior to those obtained from independent 

utilization of each technique. 
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1. INTRODUCTION 

MRI is an imaging modality widely used for clinical diagnosis. While MRI has many desirable properties 

such as lack of radiation, non-invasiveness and 3D imaging capability, long data acquisition times reduce the 

practical utility of this medical imaging modality in some applications. Thus, reduction of imaging time has 

been an important area of research in MRI. Advances in gradient technology have been a key factor in 

development of faster imaging techniques over the past few decades. In addition, recent introduction of pMRI 

methods have provided substantial increase in imaging speed. pMRI techniques exploit the use of multi-

channel receiver arrays and acquire the magnetic resonance (MR) signal simultaneously from several receiver 

coils that have varying spatial sensitivity. Compared to single coil acquisition schemes, the speed of image 

acquisition with pMRI is increased by only acquiring a fraction of the data necessary to reconstruct a full 

FOV image. This is possible because the spatial sensitivity information of the receiver coils is also used to 

reconstruct the image from this reduced dataset. While the most commonly known pMRI methods include 

SMASH [1], SENSE [2], and GRAPPA [3], there have been many other techniques proposed over the last 

decade. A good review of pMRI techniques can be found in [4][5]. Despite their recent introduction, the 

pMRI methods were quickly embraced by the MR community. These methods were rapidly and widely 

commercialized. They are currently available on all commercial scanners and are used routinely in clinic 

practice. 

Recently, Candès et al. [6] and Donoho [7] introduced a mathematical framework for reconstructing sparse or 

compressible signals from a small number of incoherent linear measurements. This new framework is 

referred to as Compressive Sampling or Compressed Sensing. The CS theory illustrates that signals that have 

a sparse representation in a known basis can be reconstructed from a much smaller number of measurements 

compared to the number of measurements suggested by the Nyquist theorem. Instead of describing sufficient 
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sampling based on the band-limitedness of signals as in Nyquist theory, the CS theory describes sufficient 

sampling based on the compressibility of signals. MRI represents a good application for CS theory since 

imaging is performed by making linear measurements (in Fourier space) of the object and MR images are 

highly compressible. Recent results indicate that CS theory can be applied to MRI and yield significantly 

accelerated data acquisition [8][9][10][11][12][13][14][15][16].  

In this work, it is illustrated that pMRI and CS can be combined. This paper is organized as follows: In 

Section 2, a brief overview of pMRI and CS methods in MRI is provided. In Section 3, the proposed method 

that combines pMRI and CS is introduced. Experimental results and conclusions are presented in Section 4, 

and Section 5, respectively. 

2. THEORY 

2.1 Parallel Imaging in MRI: SENSE and CG-SENSE 

In this section, two pMRI methods referred to as SENSE [2] and Conjugate Gradient SENSE (CG-SENSE) 

[17] are discussed. A conventional, fully sampled data acquisition is illustrated in Figure 1(a). Here, sufficient 

samples are acquired in Fourier space so that the image can be reconstructed by simply taking the inverse 

Fourier transform of the acquired data. The pMRI data acquisition corresponding to a reduction factor 

2R is illustrated in Figure 1(b). Since every other Fourier line along the y direction is skipped during data 

acquisition, the inverse Fourier transform of the acquired data results in a reduced FOV image with aliasing in 

this case. The SENSE technique is an unaliasing method applied to the reduced FOV images. SENSE is based 

on the observation that for a given undersampled Fourier trajectory (such as the one in Figure 1b), it is 

possible to determine which pixels in the full FOV image have been superimposed to form a given pixel in 

the reduced FOV image. SENSE uses the knowledge of the aliasing pattern together with the sensitivity 

profile of each coil to obtain the full FOV image. Let ( , )f x y denote the signal of interest at a certain location 

( , )x y , and let ( , )kS x y denote the sensitivity profile of the k-th receiver coil at the same location. The 

reduced FOV image for the k-th receiver coil can then be expressed as 

1 1 2 2( , ) ( , ) ( , ) ( , ) ( , ) ... ( , ) ( , )k k k k R RI x y S x y f x y S x y f x y S x y f x y    (1) 

where , 1, ,iy i R denote the y-coordinates of the pixels in the full FOV image that were superimposed to 

form the pixel at location ( , )x y in the reduced FOV image. The set of linear equations for all cn coils can be 

expressed in matrix notation 

xy xy xyI = S f       (2) 

where xyI is an 
cn -dimensional vector consisting of the values of the reduced FOV image at the chosen pixel 

for each coil, 
xyS is an cn R matrix whose entries correspond to the coil sensitivities at the R superimposed 

locations, and xyf is an R -dimensional vector of the desired pixel values in the full FOV image. If the values 

of the sensitivity matrix 
xyS are known or can be estimated, the pixel values of the full FOV image can be 

recovered using  

1
H H

xy xy xy xy xyf = S S S I        (3) 

 

By solving Equation (3) for each of the pixels in the reduced FOV image, all of the pixel values in the full 

FOV image can be recovered.  



 

 
 

 

 

Figure 1: (a) Fully sampled data acquisition and the resulting full FOV image. (b) pMRI acquisition corresponding to a 

reduction factor R=2 and the resulting reduced FOV image with aliasing artifacts. The solid lines indicate acquire 

Fourier lines and the dashed lines indicate the unacquired lines. 

While the SENSE method works well for the Cartesian sampling case described above, its direct application 

to more general sampling patterns such as spiral or radial trajectories is difficult. This is because the aliasing 

that results from undersampling arbitrary Fourier trajectories is significantly more complex than the 

uncomplicated Cartesian case and simple unfolding of these superimposition patterns in the image domain is 

difficult. To address these problems, an iterative method called conjugate gradient SENSE (CG-SENSE) was 

proposed [17]. In CG-SENSE, the reconstruction problem is formulated using the equation 

H HE E f = E g       (4) 

where f is an 
2N -dimensional vector of the desired pixel values in the N N full FOV image, and g is an 

c Kn n -dimensional vector containing the Kn measurements made by each of the cn receiver coils in Fourier 

space. E is an 
2

c Kn n N encoding matrix whose entries are given by 

, ( )k ji

lk j l jE e s
k r

r        (5) 

where jr denotes the position of the j-th pixel, kk  is the k-th sampling position in Fourier space, and ( )l js r is 

the sensitivity of the l-th coil at pixel location j. In CG-SENSE, Equation (4) is solved iteratively using the 

conjugate gradient method [18]. To improve the conditioning of the problem in Equation (4), regularization 

techniques have been proposed [19][20][21]. The Tikhonov regularized problem can be stated as 

2

2 2
min( ) 

f
g - Ef f      (6) 



 

 
 

 

In Equation (6), the regularization parameter  allows for adjusting the relative importance of the two 

functionals and, thus, is used to trade off between agreement with measured data and noise amplification. One 

method of determining the optimal parameter  is the L-curve algorithm [22]. 

It is important to note that both SENSE and CG-SENSE require explicit knowledge of the sensitivity profiles 

of each coil. Different methods have been proposed in the literature for estimating the sensitivity profiles. In 

[2], Pruessmann et. al. propose an additional calibration scan for coil sensitivity estimation. During this scan, 

data is acquired using both the receiver coil array and another coil with homogeneous sensitivity such as the 

body coil. The images obtained from each coil are then divided by the image from the coil with the 

homogeneous sensitivity to obtain the coil sensitivities. One of the disadvantages of this approach is its 

sensitivity to motion. If the patient or the coil array moves between the calibration scan and the accelerated 

imaging, the sensitivity estimation can be inaccurate. An alternative approach was proposed in [23] where the 

fully sampled central region of a variable-density Fourier acquisition was used to extract the sensitivity 

information.  

2.2 Compressed Sensing 

The recently introduced CS theory illustrates how a signal that has a sparse representation can be recovered 

from a small number of random linear measurements [6][7]. Let 
L

f  denote the L-dimensional discrete 

complex signal of interest and let 
K

g  denote the K linear measurements made on this signal. If 

M denotes the K L measurement matrix, the measurement system can be represented as  

g = Mf       (7) 

Since f is known to have a sparse representation, let Ψ denote the orthogonal transform matrix that 

represents f in the sparsity basis. Thus, Ψf is sparse and the support of f in the sparsity basis is denoted as 

S , S << L . The primary result in CS theory states that when the entries of the measurement matrix M  are 

selected at random, the signal f can be recovered with very high probability from 

(| | log( ))K O S L measurements by solving the convex optimization problem:  

1 2
min( ) such that 

f
Ψf g -Mf      (8) 

where the parameter is used to account for noise in the system. Equation (8) can be converted to an 

unconstrained optimization problem 

2

2 1
min( )

f
g - Mf Ψf    (9) 

and solved iteratively using the conjugate gradient method [15]. In Equation (9), the regularization parameter 

 allows for trading off between data consistency and sparsity. 

More recent results in CS theory indicate that completely random sampling may not be necessary [24]. 

Instead, it is required that the undersampled measurements lead to incoherent aliasing artifacts in the sparsity 

space. This is important, since completely random Fourier sampling is generally impractical in MRI. Recent 

results indicate that CS theory can be applied to MRI using undersampled radial [11][12][13][14][16], spiral 

[8], and 3DFT trajectories [10]. When used in MRI, the measurement matrix M in Equation (9) is an 
2

Kn N  (undersampled) Fourier matrix whose entries are given by 

,
k ji

k jM e
k r

   (10) 

In addition, it was shown that the discrete wavelet transform and finite differences (i.e. Total Variation (TV)) 

are good choices for the sparsity transform Ψ in MRI applications [15]. 



 

 
 

 

Incoherent aliasing is important in CS, since CS theory states that the more incoherent a 

measurement/sparsity system is the fewer measurements are needed for perfect recovery [25]. One method of 

measuring incoherence is to use transform point spread function (TPSF) analysis [15]. TPSF is defined as 

H( , ) H

CS n mTPSF m n H
e ΨM MΨ e    (11) 

where 
me denotes the m-th vector of the natural basis. Intuitively, ( , )CSTPSF m n is the interference of a 

transform coefficient of unit length at location m with the transform coefficient at location n due to the 

undersampling in the measurement system. In CS, it is desired that ( , ),CSTPSF m n m n is both small in 

magnitude and has noise-like statistics. The maximum of the sidelobe-to-peak ratio (SPR) of the TPSF 

( , )
max max

( , )

CS
CS SPR

m n
CS

TPSF m n

TPSF m m
   (12) 

can be used as a measure of the worst case interference due to the undersampling in the measurement system. 

The standard deviation of the TPSF, 
CS TPSF

, can be used to measure incoherence as well. 

3. PARALLEL COMPRESSED SENSING 

As discussed in the previous section, both parallel imaging and CS are techniques used to accelerate the 

imaging process in MRI. While parallel imaging exploits the knowledge of the coil sensitivities, CS exploits 

the inherent sparsity of MR images to enable reconstruction of undersampled data. The goal of this work is to 

combine these techniques by jointly exploiting the knowledge of the coil sensitivities and the sparsity of MR 

images to achieve improved performance. The combined parallel imaging and CS (PICS) reconstruction can 

be formulated as an unconstrained optimization problem: 

2

2 1
min( ) 

f
g - Ef Ψf      (13) 

By comparing Equation (9) to Equation (13), it can be seen that the difference between CS and PICS is in the 

measurement matrix. In the CS case, the entries of the measurement matrix are given in Equation (10). The 

entries of the measurement matrix for the PICS case are given in Equation (5). Due to the joint processing of 

all the measurements from the coil array, the number of measurements in the PICS case is increased by the 

number of coils compared to the CS case. In addition, the measurements in the PICS case are modulated by 

the sensitivity profiles of the coils. While increased number of measurements generally allows recovery of 

more transform coefficients in the sparsity domain and result in increased performance, the increase in the 

number of recovered transform coefficients is also dependent on the sensitivity profiles of the receiver coil 

array. The incoherency of the aliasing artifacts in the PICS case can also be analyzed using TPSF analysis. In 

this case, the TPSFPICS is defined as 

H( , ) H

PICS n mTPSF m n H
e ΨE EΨ e    (14) 

The quantities maxPICS SPR and PICS TPSF  can be calculated by replacing CSTPSF with PICSTPSF  in the 

calculation of maxCS SPR and CS TPSF , respectively. 

4. RESULTS  

In this section, the performance of PICS is investigated and compared to that of CS, SENSE, and CG-SENSE.  

In our analysis, we use the radial Fourier trajectory because of its desirable properties such as motion 

insensitivity [26] and variable sampling density. However, the framework presented here can be used for 

other trajectories as well. In our results, we use a 256 256 image matrix, and 256 sampling points along 



 

 
 

 

each radial line in Fourier domain. The number of radial lines is adjusted to achieve the desired amount of 

undersampling. A brain dataset obtained using an 8-channel head coil was used to create the coil sensitivities 

to be used during the computer simulations. The fully sampled central region of the Fourier data for each coil 

was reconstructed and combined using sum-of-squares. These individual low-resolution coil images were 

then divided by the sum-of-squares image to estimate the coil sensitivities. These sensitivity profiles are 

illustrated in Figure 2. 

 

 
Figure 2: Coil sensitivities used in computer simulations. 

 

 

4.1 TPSF Analysis  

We first compare the incoherency properties of CS and PICS. The results in this section are obtained using a 

radial trajectory with 32 views. The sparsifying transform used in this section is the 3-level Daubechies-6 

wavelet transform. In Figure 2, ( , )CSTPSF m n  and ( , )PICSTPSF m n  are visualized for a particular value of m 

that corresponds to a location in the HH1 subband. We can see that the interference due to undersampling is 

spread within the wavelet subband, across other subbands at the same resolution level, and across other 

resolution levels in both cases. However, the interference is smaller for the PICS case compared to CS.  

 

 

Figure 3: (a) ( , )CSTPSF m n  (b) ( , )PICSTPSF m n  for one value of m that corresponds to a location in the HH1 subband. 

 

Our analysis indicates that the value of maxPICS SPR is smaller than maxCS SPR  by about %8. A closer, 

subband-by-subband analysis indicates that this decrease ranges between %0-%11 between subbands. These 

results indicate that the worst-case performance improvement of PICS over CS is expected to be modest in 

this case. On the other hand, PICS TPSF  is smaller than CS TPSF  by a larger margin. In Table 1, we present 

the percent decrease in the standard deviation of SPR between PICS and CS defined as 



 

 
 

 

% 100 ( ) /CS TPSF PICS TPSF CS TPSF
    (15) 

 
LL3 HL3 LH3 HH3 HL2 LH2 HH2 HL1 LH1 HH1 

%Δ 22.95 39.93 29.85 19.54 24.01 29.43 26.89 26.85 31.34 28.76 

Table 1: Percent decrease in the standard deviation value of SPR for PICS compared to CS. 

  

4.2 Phantom Results 

A computer generated Shepp-Logan phantom was used to compare different methods. The phantom image 

was modulated using the eight sensitivity profiles shown in Figure 2. For each simulated coil, samples were 

taken in Fourier space along a radial trajectory. White Gaussian noise was then added independently to both 

real and imaginary parts of the Fourier data. Noise was uncorrelated between different coils. Images were 

then reconstructed using different methods. In Figure 4, images reconstructed using 16 radial views (~24X 

undersampling) are presented. The image in Figure 4(a) was obtained by reconstructing each coil image using 

Non-Uniform Fourier Transform (NUFFT) [27] and combining the coil images using sum-of-squares.  The 

images in Figures 4(b) and 4(c) were obtained using CG-SENSE and CG-SENSE with Tikhonov 

regularization, respectively. The image obtained using CS reconstruction followed by sum-of-squares 

combination is shown in Figure 4(d), and the PICS image is shown in Figure 4(e). For CS and PICS, finite 

differences was used as the sparsifying transform. Similarly, images reconstructed using 32 radial views 

(~12X undersampling) are presented in Figure 5.  

 

 

Figure 4: Phantom images reconstructed from 16 radial views using (a) NUFFT+SOS (b) CG-SENSE (c) CG-SENSE with Tikhonov 

regularization (d) CS + SOS (e) PICS. 

 

 

Figure 5: Phantom images reconstructed from 32 radial views using (a) NUFFT+SOS (b) CG-SENSE (c) CG-SENSE with Tikhonov 

regularization (d) CS + SOS (e) PICS. 

 

 



 

 
 

 

4.3 In vivo Results 

A radial Fast Spin Echo data set acquired with a 1.5T clinical scanner (GE Healthcare, Waukesha, WI) and an 

8-channel head coil array was used to obtain in vivo results. Acquisition parameters were TR = 4.5 sec, 

FOV=28 cm, ETL=4. The full radial dataset consisted of 256 equally spaced radial lines with 256 sample 

points each. A reference image was obtained by using the full dataset and reconstructing each coil image 

using NUFFT and combining the coil images using sum-of-squares. This reference image is presented in 

Figure 6(a). The dataset was then subsampled and only 32 equally spaced radial lines were kept (~12X 

undersampling). Images were reconstructed from the subsampled dataset using different methods. The results 

are presented in Figures 6(b)-6(f) for NUFFT+ sum-of-squares, CG-SENSE, CG-SENSE with Tikhonov 

regularization, CS, and PICS, respectively. For CS and PICS, 3-level Daubechies-6 wavelet transform and 

finite differences were used as the sparsifying transforms. Similarly, images reconstructed using 64 radial 

views (~6X undersampling) are presented in Figure 7.  

 

 

Figure 6: In vivo images reconstructed using different methods. (a) NUFFT+SOS from 256 radial views (b) NUFFT+SOS from 32 

radial views (c) CG-SENSE (d) CG-SENSE with Tikhonov regularization (e) CS + SOS (f) PICS. (c)-(e) uses 32 radial views. 

 
 



 

 
 

 

 

Figure 7: Invivo images reconstructed using different methods. (a) NUFFT+SOS from 256 radial views (b) NUFFT+SOS from 32 

radial views (c) CG-SENSE (d) CG-SENSE with Tikhonov regularization (e) CS + SOS (f) PICS. (c)-(e) uses 64 radial views. 

 

5. CONCLUSIONS  

This paper illustrates that CS and pMRI techniques can be combined. The proposed technique jointly exploits 

the knowledge of the coil sensitivity profiles together with the sparsity of MRI images. Phantom and in vivo 

results suggest that such joint processing yields results that are superior to those obtained from independent 

utilization of CS or pMRI. 
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