
Reduced Memory Multi-Layer Multi-Component Rate Allocation for
JPEG2000

Prajit Kulkarni∗ 1, Ali Bilgin1, Michael W. Marcellin1, Joseph C. Dagher1, Thomas Flohr2 and Janet
Rountree2

1Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ

USA 85721
2Science Applications International Corporation (SAIC), Tucson, AZ USA 85711

ABSTRACT

Remote sensing images are often multispectral in nature and are acquired by on-board sensors in a “push-broom”
fashion. These images are compressed and transmitted to ground stations for further analysis. Since they are extremely
large, buffering all acquired data before encoding requires huge amounts of memory and introduces latency.
Incremental compression schemes work on small chunks of raw data as soon as they are acquired and help reduce
buffer memory requirements. However, incremental processing leads to large variations in quality across the
reconstructed image. We propose two “leaky bucket” rate control algorithms that can be employed for incrementally
compressing hyperspectral images using JPEG2000. Both schemes perform rate control using the fine granularity
afforded by JPEG2000. The proposed algorithms have low memory requirements and enable SNR scalability through
the use of quality layers. Experiments show that the proposed schemes provide significant reduction in quality
variation with no loss in mean overall PSNR performance.

Keywords: image compression, JPEG2000, incremental processing, rate allocation, hyperspectral imagery

1. INTRODUCTION

With the increased use of remote sensing data, the need for efficient transmission of such data has gathered greater
importance in recent times. Remote sensing images are often multispectral in nature and are acquired by on-board
sensors in a “push-broom” fashion. One way to handle such acquisition is to buffer the entire image and then perform
the compression operation on the data. This, however, is highly undesirable. Since remote sensing data are often quite
large, buffering of the entire image requires large amounts of on-board storage. Secondly, buffering introduces a delay
into the processing system. Thus, it is of interest to consider algorithms that can process and transmit data
incrementally, thus reducing latency and memory requirements. However, incremental processing can lead to large
variations in quality across the reconstructed image. This problem is addressed here by careful design of rate control
algorithms.

Some research has gone towards developing rate control algorithms designed specifically for on-board operations on
space remote-sensing missions ([1]–[6]). The DCT-based rate control scheme of [1] divides the acquired data into
units called segments. Rate control is performed on a segment-by-segment basis. The algorithm is a variation of the
JPEG standard and its performance is slightly inferior to that of JPEG due to the push-broom approach. The method
uses a quantization table which is updated to control the data rate (compression ratio).

Discrete Wavelet Transform (DWT) techniques have become popular because of their advantages over other
techniques such as DPCM and DCT [2]. A low complexity rate constrained wavelet coder is presented in [3]. This
system supports hierarchical processing of wavelet subband coefficients. Such processing can be used to design a rate
control loop for multispectral images ([4], [5] and [6]). In [4], the spectral components are decorrelated to remove

∗ prajit@ece.arizona.edu

Image and Video Communications and Processing 2005, edited by Amir Said,
John G. Apostolopoulos, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 5685 © 2005 SPIE and IS&T · 0277-786X/05/$15

139

spectral redundancy. Then, the wavelet coefficients are encoded in a hierarchical manner. Different quantization step
sizes are used for different levels of the multiresolution pyramid. The schemes described in [5] and [6] use feedback
from a regulator to allocate bits to the various wavelet subbands.

The use of JPEG2000 in compression applications is desirable because of its state-of-the-art performance and the
inherent scalable nature of its compressed codestream. Research into rate control methods that can be used in
conjunction with JPEG2000 is described in [7]–[10]. In [7], the efficiency of the Post Compression Rate-Distortion
Optimization (PCRD-opt [11], [12]) algorithm used in JPEG2000 is enhanced using a byte-slope table that stores the
number of bytes that have been contributed to each possible R-D slope value. Based on entries in this table, it is
decided if a coding pass will be included in the final codestream. If not, it is not coded at all. The table is updated each
time a coding pass is encoded. This removes the wasted computation and memory usage in encoding and storing data
that will be thrown away when the final codestream is produced.

Work in [8] and [9] deal with scan-based approaches to rate control in JPEG2000. The PCRD-opt algorithm is used to
form embedded bitstreams for “stripes” in the image and these are combined to form a composite final codestream.
Such incremental processing is made possible without “hard seams” at stripe boundaries because of reduced memory
wavelet decomposition algorithms ([12], [13]) that may be used in JPEG2000 compression. Such transforms compute
the transform in an incremental fashion. That is the wavelet coefficients for the “top” of the image are computed after
only a few rows of image data are available. Such processing is possible because the filters employed in the wavelet
transform have finite regions of support.

In [8], a quality control loop is used with a scan-based wavelet transform algorithm to meet a final MSE target. Based
on the MSE of previously released image portions, the quantization step size for each subband of each stripe is varied
to minimize the total bit rate for a target MSE. In [9], a sliding-window approach for rate control is used. Here, stripes
of the input image, called scan elements, are processed and stored in a rate control buffer whose size depends on the
target rate. Each time a new scan element is added to the buffer, an R-D slope threshold is computed for the buffer and
coding passes having slope values lower than this threshold are deleted. Data are removed from the buffer and
transmitted at a fixed rate corresponding to the desired amount of compression. Similar algorithms are described in
[14] for compressing gray scale video.

The work presented in this paper extends that described in [9] and [14]. In particular, we present the development of a
novel rate control method for JPEG2000 for multi-component images and for multi-layered codestreams. We present
two rate control algorithms that have been successfully tested on remote sensing data.

Section 2 provides an overview of JPEG2000. In Section 3, we present our work, the Multi-layer Sliding Window
Rate Control (M-SWRC) and Extended Sliding Window Rate Control (M-EWRC) algorithms, along with results.
Section 4 is a note on our conclusions and future work.

2. OVERVIEW OF JPEG2000

This section provides a brief overview of JPEG2000. For more details, the reader is referred to [10].

When the image to be compressed is input to the JPEG2000 encoder, the image is first divided into tiles. It is
allowable to include the entire image in a single tile, (thus essentially eliminating the use of tiles). Each tile is
compressed independently, thus enabling one method of low-memory operation. The disadvantage of using tiles is
that, at low rates, images may suffer from artifacts because tile boundaries may become visible.

An (optional) component transform is performed on each tile. The wavelet transform is then performed on each
resulting tile component. Each resolution of a wavelet-transformed tile-component is partitioned into precincts. Each
precinct corresponds to a resolution level of one spatial region. The precinct size can be chosen independently by
resolution, but each dimension of the precinct size must be a power of 2. Each wavelet transform subband is also

140 SPIE-IS&T/ Vol. 5685

divided into rectangular regions, referred
to as codeblocks. Fig. 1 shows the
relationship between precincts and
codeblocks for three levels of wavelet
transform (4 resolutions).

The wavelet coefficients in each codeblock
are quantized and independently coded
using a bitplane coder. This coding
involves context-dependent, binary,
arithmetic coding of bitplanes of the
quantized coefficient values. A collection
of bits, one from the binary representation

(of the magnitude) of each wavelet coefficient in a codeblock (all having the same significance), forms a bitplane. For
example, the most significant bits from each coefficient comprise the most significant bitplane. Each bitplane is
encoded using three coding passes, starting from the most significant bitplane. Each bit in a bitplane is encoded in
exactly one of the three coding passes – significance propagation, magnitude refinement or clean-up.

Each coding pass has a distortion-length slope associated with it. The distortion-length slope of a coding pass is
defined as

R

D
S

∆

∆
= ,

where, D∆ is the reduction in image distortion obtained by including the coding pass, and R∆ is the number of bits
used to code the coding pass.

The encoder computes the distortion-length slope of every coding pass and uses it to guide codestream formation as
described below. Each codeblock produces an elementary embedded bitstream. The bitstreams from different
codeblocks can be independently truncated to different lengths to satisfy certain constraints.

In a typical JPEG2000 encoder, selection of truncation points is done after all coding passes of all codeblocks in a tile
(or image) have been generated, at which point the distortion-length slopes of all the coding passes are known. The
higher the slope value of a coding pass, the more “important” it is, since its inclusion leads to a greater reduction in
distortion (per bit) than that obtained by including a coding pass with a smaller slope value. Thus, the coding passes
with the largest distortion-length slopes (subject to a constraint on the desired file size) are included in the file. This
optimization strategy is known as Post-Compression Rate-Distortion Optimization and minimizes the distortion
(typically MSE) of the compressed/decompressed image. Conceptually, this optimization is performed by sorting the
coding passes in descending order of distortion-rate slope, and including coding passes starting from the top of the list,
until the byte budget is exhausted.

Once the encoder decides on which coding passes will be included in the codestream, the final task is to form the
codestream. The fundamental unit used in the construction of a JPEG2000 codestream is called a packet. A packet
contains the compressed data from a varying number of coding passes from the codeblocks in one precinct of one tile-
component. Any number of coding passes (including zero) can be included from each codeblock. The packets are then
organized into layers. A layer is defined as a collection of packets, one from every precinct, of every resolution of
every tile-component of a tile. A packet provides one quality increment for one spatial region (precinct), at one
resolution of one tile-component. Since a layer consists of one packet from every precinct of each resolution of each
tile-component, it provides one quality increment for an entire tile. The introduction of layers into a codestream
facilitates progression by quality (SNR scalability) decoding. The layered codestream can be used to enable many
applications. For example, a layered codestream can be used to transmit data over a time-varying communication
channel. Depending on the available bandwidth, varying numbers of layers can be transmitted and decoded. Similarly,
a layered codestream can be used in a multicast environment where different channels have different bandwidths. In
this case, a single multi-layered codestream would meet the bandwidth requirements of all the channels, with each
layer meeting the target rate of a different channel.

Precinct
for Highest
Resolution

Codeblocks

Precinct
for Lowest
Resoluti on

Fig. 1. Relationship between Precincts and Codeblocks.

SPIE-IS&T/ Vol. 5685 141

Besides compressed coding passes, the JPEG2000 codestream includes information necessary for decompression of
the codestream. The codestream starts with the main header. The main header contains global information that is
necessary for decompression. This includes the sizes of the geometric structures (image, tile, precinct, codeblock), as
well as coding parameters. The main header is followed by a sequence of tile-streams. Each tile-stream starts with a
tile header that contains information related to that particular tile. Tile headers can be used to overwrite some of the
coding parameters specified in the main header. The body of a tile-stream contains the packets belonging to the tile. A
two-byte marker called the EOC (End of Codestream) terminates the codestream.

3. MULTI-LAYER MULTI-COMPONENT RATE ALLOCATION

In the absence of tiles, a typical JPEG2000 encoder compresses and buffers all coding passes of all codeblocks prior to
forming any packets. This requires storage corresponding to somewhat more than the compressed image. This is done
to ensure uniform quality from top to bottom of the image and works well in most cases. However, in some
applications (remote-sensing in particular), buffering all data, even compressed, is not feasible. One approach to
circumventing this problem is to employ tiles (with the risk of artifacts as discussed above). Fortunately, JPEG2000
supports another approach to low memory compression. This approach is enabled by the use of precincts. As described
above, a precinct corresponds to one spatial region at one resolution. Precincts can be thought of loosely as tiles, but in
the wavelet domain. Since there are no seams (breaks) in the wavelet transform itself, precincts do not cause artifacts
like tiles do. Packets from one precinct can be encoded independently of those from other precincts. Thus, when an
incremental wavelet transform is employed, packets can be encoded and transmitted in a top-to-bottom fashion
without buffering the entire (compressed) image.

While the JPEG2000 standard envisions employing precincts in this fashion, it does not require any specific rate
control technique. Specifically, there is no required method that attempts to achieve uniform quality from top to
bottom within an image. This is the main subject, and contribution, of this paper.

Before a detailed treatment of rate control, we introduce the idea of a scan element. As discussed above, precinct sizes
can be chosen independently by resolution level. In this work, we chose precinct sizes in a specific fashion so that
there is a correspondence between precincts from different resolutions. Specifically, corresponding precincts from
different resolutions correspond to the same spatial
region. We call each set of corresponding precincts a scan
element. To achieve the goal of low memory processing,
the spatial region of a scan element should be “short,”
corresponding to a small number of image lines.
However, the width can generally as wide as the image.
With this choice, the spatial region of a scan element
corresponds to a “stripe” of image pixels. This situation is
depicted in Fig. 2. This figure shows a number of scan
elements for one component with 2 levels of wavelet
transform. Here, regions in different subbands shaded
with the same color correspond to the same region of the
image in the spatial domain. As mentioned before, the
formation of scan elements using small amounts of data
from different subbands is possible because of the use of
an incremental wavelet transform. This concept of scan elements can be extended to any number of resolution levels,
with contributions from subbands getting smaller (by powers of 2) at the lower resolutions.

All results presented in this paper were obtained using the hyperspectral AVIRIS [15] data set (“Low Altitude”). This
data set has 224 components and the dimensions of the image are 3584 pixels (high) by 614 pixels (wide). In all cases,
we employ scan elements corresponding to 32 rows of image data. Therefore, 112 scan elements are required to
completely cover the image. Two levels of wavelet transform are applied with a codeblock size of 16x256. Four

Wavelet Transformed Data
Rearranged to form Scan Elements

2-Level Wavelet Transform of Image

Fig. 2. Relationship between Scan Elements and Resolution
Subbands for a Single Component.

142 SPIE-IS&T/ Vol. 5685

Fig. 4. Scan Element PSNRs for Component 84.

quality (SNR scalable) layers are used, corresponding to 0.5 bpp/component (112 bpp), 1.0 bpp/component (224 bpp),
1.5 bpp/component (336 bpp) and 2.0 bpp/component (448 bpp), respectively. In all figures, results are reported for a
rate of 448 bpp (2 bpp/component), unless mentioned otherwise. This is the highest quality layer among the four layers
in the codestream. In this paper, compression performance is measured using Peak Signal-to-Noise Ratio (PSNR)
numbers that quantify the amount of distortion that the compression process introduces into the image.

Before we introduce our sliding window based rate control, we thoroughly explore the “obvious” approach. In this
approach, each scan element is encoded at the same (constant) rate (in bits per pixel). Equivalently, each scan element
experiences the same compression ratio. While simple, this method has some problems. Scan elements that are easy to

compress (e.g. have low detail) will end up being
compressed with higher quality than harder-to-
compress scan elements.

Using the parameters outlined above, Fig. 3
compares the PSNR of individual image
components via two different treatments. While
both employ scan elements, one employs fixed
rate encoding for each scan element, while the
other buffers all scan elements before creation of
the final codestream. It is seen that the mean
PSNR over all components differs by only about
0.03 dB between the two cases. From these
results, it is obvious that there is almost no loss in
PSNR performance even when individual scan
elements are compressed at a fixed rate. Hence,
we will not consider overall PSNR performance in
the remainder of this paper. However, this does
not take into account possible quality differences
from top to bottom within an image.

This is illustrated by Fig. 4, which shows the PSNR for each individual scan element of a particular component. The
spread in PSNR across scan elements is nearly
3.5 dB. The easily compressible scan elements
have high PSNR and the ones with large image
information have lower PSNR. For comparison,
the case when all data are buffered is also
included. It can be seen that the unbuffered case
has a large variation in the quality across each
component, even though the mean overall PSNR
is close to when all data are buffered. This is the
drawback of fixed-rate encoding. Though plots
have been shown for only one rate (2
bpp/component), they are similar for other rates.

Our goal in what follows is to maintain the
quality fairly constant across the image without
buffering the entire image. To this end, we
employ a “leaky bucket” approach to rate
control. Fig. 5 shows the block diagram of a
scheme for low-memory incremental processing
of large multi-component images. The buffer

Fig. 3. Comparison of Component PSNR values when Buffering all
112 Elements vs. Fixed-rate Encoding (Buffering 1 Scan Element).

SPIE-IS&T/ Vol. 5685 143

control mechanism performs
rate control on the incremental
compressed data at the output
of the bitplane coder and fills
up the rate control buffer. The
result of this rate allocation
process is that each scan
element is encoded at a
different rate depending on
how “difficult” it is to
compress. Even so, data are
taken out of the buffer for
transmission at a constant rate.
Layers are formed each time a
new compressed scan element
is added to the rate control
buffer. This is in contrast to
the “normal” JPEG2000
encoder where layers are
formed after all compressed
data are buffered for the entire
image. The salient feature of
leaky bucket rate control
schemes is that they have low
memory requirements since
only a moderate number of
compressed scan elements are
buffered.

Two leaky-bucket algorithms
for multi-layer multi-
component rate control have
been implemented. Consider a
fixed-rate downlink that is
designed to carry M bits
(corresponding to an entire
compressed image) in T seconds. The fixed rate of transmission on the link is M/T bits/sec. If the number of scan
elements is N, we (remove from the rate control buffer and) transmit M/N bits of data every T/N seconds. For fixed
rate encoding, the M/N bits transmitted each time correspond (exactly) to one complete scan element. In the leaky
bucket case, this correspondence is only nominal (or average). The actual compressed size varies from one scan
element to another. The algorithms are described in more detail in the following sections.

3.1. Multi-Layer Sliding Window Rate Controller (M-SWRC)

The algorithm was first described in [9] and was adapted to video coding in [14]. Each scan element is quantized,
encoded using a bitplane coder and added to the rate control buffer. The size of the buffer is determined in terms of the
number of scan elements (nominally held) in the buffer. Each time a new scan element is to be added to the buffer, a
distortion-rate slope threshold is calculated for each desired codestream layer such that all the compressed scan
elements fit in the buffer. All coding passes belonging to the scan elements in the buffer and to the new scan element,
with slopes lower than the lowest layer threshold, are deleted. When enough scan elements have been processed to fill

Sliding-Window Bitstream Buffer

Multi-component Input Scan
Elements

Buffer
Management

Bitplane Encoding

Constant Rate Multilayered Output
Codestream

…………

…………

…………
Threshold for

Layer L-1

Threshold for
Layer L-2

Threshold for
Layer 1

Threshold for
Layer 0

Wavelet Transform of a Multi-
component Image

1

2

M

1 2 3 N

Fig. 5. Block Diagram of Leaky-Bucket Rate Control Algorithm for Incremental Processing

of Large Multi-Component Images with Multiple Quality Layers.

144 SPIE-IS&T/ Vol. 5685

up the buffer, the multi-layered data are pulled out of the buffer at a constant rate and new data are added using the
scalability property of the bitstreams. Thus, one scan element is processed every time in a “sliding window” fashion.
The algorithm is described in more detail in Table I. In this table, a quantity called excess bytes is used. As mentioned,
the data being removed from the buffer correspond (nominally) to one compressed scan element. However, since each
scan element is encoded at a different rate, the data may correspond to only a portion of a scan element. In that case,
only a part of the scan element is removed from the buffer. The remaining portion of the scan element is “frozen” in
the buffer and no more rate-distortion optimization decisions are made on this data when the next scan element is
added to the buffer. This portion of data is flushed along with the next scan element to be flushed out. The portion of
the buffer occupied by this frozen chunk of data is not available when the next PCRD-optimization is performed on
the buffer. The excess bytes value for each layer stores the size of the contribution from that layer to this frozen
portion of the buffer and is used when layer thresholds are calculated.

Similarly, the data rate may be such that the scan element to be released may not be large enough to utilize the entire
available bandwidth. In this case, portions of an additional scan element (or elements, depending on their sizes) have
to be released in order to maintain a constant rate output. Again, if a portion of a scan element is left behind after the
previous flush operation, the part of the buffer occupied by this data is frozen and the excess bytes value for each of
the layers is updated to reflect this change. This process is repeated until all scan elements are processed.

TABLE I

M-SWRC ALGORITHM FOR MULTIPLE LAYERS

Let the total number of scan elements for an image be N, each corresponding to P pixels. Let the number of
layers to be generated be L, with corresponding rates (in bpp) R0, R1,..., R(L-1). Let the nominal number of
scan elements in the buffer be S. Let the target sizes corresponding to the buffered portion of the L layers
be B0, B1,... B(L-1) bytes. We have Bl = PSRl/8, l=0, 1, 2,..., L-1.
The nominal number of bytes contributed by each layer of a single scan element to the final composite
codestream (flush bytes) is given by Fl = PRl/8, l=0, 1, 2,..., L-1.
The fixed transmission rate is such that PR(L-1)/8 bytes are removed from the buffer before each new scan
element is added.

Then, the Sliding Window Rate Control algorithm is described as follows:

1. Start with the buffer empty and reset the value of excess bytes for each layer, i.e., El =0, l=0, 1, 2,..., L-
1.

2. When the first scan element has been processed and is ready to be buffered, compute the distortion-rate
slope threshold for each layer, TDR(l), such that the total size of the coding passes from the scan element
that contribute to each layer, and have slopes ≥ TDR(l) does not exceed the target size for that layer, Bl.
Delete all coding passes of the scan element, with slope values < TDR(L-1), the lowest threshold among all
the layer thresholds. If S = 1, go to Step (6).

3. When the next scan element has been processed and is ready to be buffered, for each layer l, {0,1∈l ,...,

}1-L , perform the following operations:

a. Calculate the new layer target size as bl = Bl − El.
b. Compute the distortion-rate threshold, TDR(l), such that the total size of all qualifying coding passes,

from the new scan element and from all the unfrozen scan elements already in the buffer, that
contribute to this layer, does not exceed the target size for this layer, bl.

4. Delete all coding passes of the new scan element and those of the unfrozen scan elements in the buffer,
with slope values <TDR(L-1).

SPIE-IS&T/ Vol. 5685 145

Fig. 6. Standard Deviation of PSNR by Component for M-SWRC.

5. If buffer has not been initialized, repeat Steps 3 and 4 until S scan elements have been processed and
buffered. Now, the buffer is initialized and data transmission can begin.

6. For each layer l, {0,1∈l ,..., }1-L , perform the following operations:

a. Flush out El bytes of data (if any), which form the remaining portion of a previous (partially
flushed) scan element. Update the value of number of bytes to be flushed, given by, fl = Fl − El.

b. Compute the contribution, Ol, of the qualifying coding passes from the next scan element to be
flushed, to this layer.

7. If O(L-1) = f(L-1), the size of scan element being released fits the output byte requirement exactly. For each

layer l, {0,1∈l ,..., }1-L , update value El = 0. Go to step (10). Else, go to step (8).

8. If O(L-1) > f(L-1), the total number of bytes being released is greater than the allotted number and some data

from the current scan element being flushed will remain in the buffer. For each layer l, {0,1∈l ,..., }1-L ,

update value El= Ol − fl. Go to step (10). Else, go to step (9).

9. If O(L-1) < f(L-1), releasing one scan element does not meet the output byte requirement. We need to

release an additional scan element from the buffer. For each layer l, {0,1∈l ,..., }1-L , compute the total

contribution, Ol, from this layer. Go to step (7)

10. Release scan element (or elements, as required) from the buffer. Repeat steps (3) through (9) until all
scan elements have been processed and buffered. No further calculation is then required. Flush out F(L-1)

bytes at a time, until all data have been flushed.

Fig. 6 shows the variation in PSNR across scan
elements for each component obtained with the
M-SWRC for various buffer sizes. It is seen that
the variation in PSNR decreases as the buffer size
is increased. This is because a bigger buffer
means that quality fluctuation among a larger
number of scan elements can be considered by the
rate control scheme during bit allocation, thus
providing greater uniformity in quality from top to
bottom within the image.

3.2. Multi-Layer Extended Sliding Window
Rate Controller (M-EWRC)

With the Multi-Layer SWRC, all coding passes
with slopes lower than the lowest threshold are
deleted. However, under certain conditions, we
may prefer to have a few of the coding passes that

were deleted in previous optimization steps. This situation may arise when most of the coding passes of the new scan
element being added to the buffer have slopes lower than the current lowest threshold, i.e., the new scan element is
“easy” to compress. Since we have already deleted the required coding passes, we are left to include “extra” coding
passes from the “easy” scan element. To avoid this, we use the M-EWRC algorithm where an extended buffer is
maintained. This algorithm can be understood as maintaining an extra layer in an enlarged buffer with all the

146 SPIE-IS&T/ Vol. 5685

processing being identical to that in M-SWRC using L+1 layers. But data from only L layers are transmitted. This
extra layer in the buffer is used to hold some of the coding passes, from the scan elements in the buffer, which
normally would have been discarded if the M-SWRC were used. When an easily compressible scan element is added
to the buffer, these coding passes can be allocated to the first L layers. The use of the extended buffer improves the
performance of the rate control algorithm. Compared to M-SWRC, tighter quality control is performed and the
variation in quality between scan elements if further reduced.

The algorithm is described in more detail in Table II. In this table, a quantity called the Effective Buffer Ratio (EBR)
has been used. It is defined as follows:

1

2
B

B
EBR= , where, 2B = size of buffer used in M-EWRC,

1B = size of buffer used in M-SWRC.

EBR has a value greater than or equal to 1. When EBR = 1, the M-EWRC algorithm is identical to the M-SWRC
algorithm.

TABLE II
M-EWRC ALGORITHM FOR MULTIPLE LAYERS

Let the total number of scan elements for an image be N, each corresponding to P pixels. Let the number of
layers to be generated be L, with corresponding rates (in bpp) R0, R1,..., R(L-1). Let the nominal number of
scan elements in the buffer be S. Let the target sizes corresponding to the buffered portion of the L layers
be B0, B1,..., B(L-1) bytes. We have Bl = PSRl/8, l=0, 1, 2,..., L-1. Let the effective buffer ratio be EBR.
The nominal number of bytes contributed by each layer of a single scan element to the final composite
codestream (flush bytes) is given by Fl = PRl/8, l=0, 1, 2,..., L-1.

The fixed transmission rate is such that PR(L-1)/8 bytes are removed from the buffer before each new scan
element is added.

Then, the Extended Sliding Window Rate Control algorithm is described as follows:

1. Start with the buffer empty and reset the value of excess bytes for each layer, i.e., El =0, l=0, 1, 2,..., L-
1.

2. When the first scan element has been processed and is ready to be buffered, compute the distortion-rate
slope threshold for each layer, TDR(l), such that the total size of the coding passes from the scan element
that contribute to each layer, and have slopes ≥ TDR(l) does not exceed the target size for that layer, Bl. Also
compute the threshold TEBR(L-1) for the extended buffer of size EBR* BL-1. Since EBR > 1, TEBR(L-1) <
TDR(L-1).Delete all coding passes belonging to the scan element, which have slope values smaller than
TEBR(L-1). If S = 1, go to Step (6).

3. When the next scan element has been processed and is ready to be buffered, for each layer l, {0,1∈l ,...,

}1-L , perform the following operations:

a. Calculate the new buffer size as bl = Bl − El.
b. Compute the distortion-rate threshold, TDR(l), such that the total size of all qualifying coding passes,

from the new scan element and from all the unfrozen scan elements already in the buffer, that
contribute to this layer, does not exceed the target size for this layer, bl.

4. Compute the threshold TEBR(L-1) and delete all coding passes belonging to the new scan element and to
the unfrozen scan elements in the primary and secondary buffers, with slope values < TEBR(L-1).

SPIE-IS&T/ Vol. 5685 147

5. If buffer has not been initialized, repeat Steps 3 and 4 until S scan elements have been processed and
buffered. Now, the buffers are initialized and data transmission can begin.

6. For each layer l, {0,1∈l ,..., }1-L , perform the following operations:

a. Flush out El bytes of data (if any), which form the remaining portion of a previous (partially
flushed) scan element. Update the value of the number of bytes to be flushed, given by, fl = Fl − El.

b. Compute the contribution, Ol, of the next scan element to be flushed, to this layer. Do not count the
bytes that will be deleted in Step 7.

7. From the rate control buffer, delete all the coding passes belonging to the scan element that is being
flushed, but with slope values that lie between the threshold for layer L-1 (TDR(L-1)) and the threshold for
the extended buffer (TEBR(L-1)).

8. If O(L-1) = f(L-1), the size of scan element being released fits the output byte requirement exactly. For each

layer l, {0,1∈l ,..., }1-L , update value El = 0. Go to step (11).

9. If O(L-1) ≥ f(L-1), the total number of bytes being released is greater than the allotted number and some

data from the current scan element being flushed will remain in the buffer. For each layer l, {0,1∈l ,...,

}1-L , update value El= Ol − fl. Go to step (11). Else go to step (10).

10. If O(L-1) < f(L-1), releasing one scan element does not meet the output byte requirement. We need to

release an additional scan element from the buffer. For each layer l, {0,1∈l ,..., }1-L , compute the total
contribution, Ol, from this layer. Go to step (7).

11. Release scan element (or scan elements, as required) from the buffer. Repeat steps (3) through (10)
until all scan elements have been processed and buffered. No further calculation is then required. Flush out
F(L-1) bytes at a time, until all data have been flushed.

The main advantage of M-EWRC over M-

SWRC is that it reduces the variation in PSNR
across scan elements with similar overall PSNR
performance. By maintaining a few more coding
passes than necessary, the M-EWRC algorithm
is able to take bits away from easily
compressible scan elements and give them to
scan elements that are harder to compress.
Therefore, there is a “fairer” distribution of the
bit budget between scan elements compared to
M-SWRC. Fig. 7 illustrates this for a particular
component when a buffer size of 20 is used. In
this paper, a value of EBR=1.5 is used for all
experiments employing the M-EWRC algorithm.

Fig. 8 shows the PSNR variation across scan
elements for the 224 components. As expected,
the standard deviation is the least when all the
data are buffered. Comparing Fig. 8 to Fig. 6, we

Fig. 7. Variation in PSNR across Scan Elements for Component 84 with
Buffer 20 for M-EWRC versus M-SWRC.

148 SPIE-IS&T/ Vol. 5685

Fig. 8. Standard Deviation of PSNR by Component for M-EWRC.

see that for the same number of buffered scan
elements, there is smaller variation in image
quality across the image when M-EWRC is used.

Ideally, the M-EWRC algorithm reduces the
standard deviation of PSNR across scan
elements. In a few components though, the
standard deviation for M-EWRC may actually be
higher than that for M-SWRC. This occurs only
when the standard deviation obtained by
buffering all the data is higher than when
incremental processing is performed. This
happens when a component has very few
features and is mostly uniform (probably due to
water absorption). Such a component is very
easy to compress. Since M-EWRC always tends
towards the case when all the data are buffered,
the standard deviation in this case tends to be
higher than that for M-SWRC. The disadvantage

with the M-EWRC scheme is that it requires more memory compared to the M-SWRC scheme. Thus, there is a trade-
off between the quality fluctuation in the transmitted scan elements and the amount of memory needed for processing.

For the intermediate layers (corresponding to 112 bpp, 224 bpp and 336 bpp respectively), the values for M-SWRC
and M-EWRC are identical. This is because these layers, by virtue of having layers above them, always operate in the
M-EWRC “mode.” Therefore, there is nothing to be gained by using a larger buffer under the M-EWRC scheme for
these layers.

4. Conclusion

We have developed two novel rate-control schemes within the JPEG2000 framework. Our work has resulted in the
development of rate control schemes for multi-component images. We have also introduced quality scalability by
incorporating multiple layers in the codestream. We have tested the two multi-layer multi-component rate control
algorithms on remote-sensing data. We have compared the performance of the M-SWRC and M-EWRC schemes for
various buffer sizes. We observe that the overall PSNR of the components is reduced by only a small amount (less
than 0.03 dB on average) when incremental processing is performed.

We also observe that the M-EWRC algorithm improves the overall PSNR slightly compared to M-SWRC, but its main
feature is that it reduces the variation in PSNR across scan elements. This is a very desirable feature in maintaining the
quality constant from top to bottom within an image.

These results demonstrate that our rate control schemes provide very good performance while still using modest
amounts of memory. Moreover, since these algorithms work for any number of layers, they can be used in multi-cast
environments to cater to differing quality requirements. These algorithms have widespread applications, especially in
the remote-sensing field, where multispectral data sets (e.g., LANDSAT) are of interest.

The coding efficiency could be improved even further by removing spectral redundancy using the wavelet (or other)
transform in the third dimension.

REFERENCES

1. S. Gonnelli, A. Henrichs, F. Thimler, “A data compression algorithm for the LRPT direct broadcast link on future
polar orbit missions,” Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Vol. 4, pp. 2026-
2028, 1999.

SPIE-IS&T/ Vol. 5685 149

2. C. Lambert-Nebout, G. Moury, “A survey of on-board image compression for CNES space missions,”
Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Vol. 4, pp. 2032-2034, 1999.

3. C. Parisot, M. Antonini, M. Barlaud, “EBWIC: A low complexity and efficient rate constrained wavelet image
coder,” Proceedings of the International Conference on Image Processing, Vol. 1, pp. 653-656, 2000.

4. T. Markas, J. Reif, “Multispectral image compression algorithms,” Data Compression Conference, pp. 391-400,
1993.

5. C. Lambert-Nebout, C. Latry, G. Moury, “On-board optical image compression for future high resolution remote
sensing systems,” Proceedings of SPIE International Symposium on Optical Science and Technology, Vol. 4115,
No. 39, pp. 332-346, August 2000.

6. C. Parisot, M. Antonini, M. Barlaud, C. Lambert-Nebout, C. Latry, G. Moury, “On Board Stripe-based Wavelet
Image Coding for Future Space Remote Sensing Missions,” Proceedings of IEEE International Geoscience and
Remote Sensing Symposium, Vol. 6, pp. 2651-2653, 2000.

7. T.-H. Chang, C.-Jr. Lian, H.-H. Chen, J.-Y. Chang, L.-G. Chen, “Effective hardware-oriented technique for the
rate control of JPEG2000 encoding,” Proceedings of the IEEE International Symposium on Circuits and Systems,
Vol. 2, pp. 684-687, May 2003.

8. C. Parisot, M. Antonini, M. Barlaud, “Scan-based quality control for JPEG2000 using R-D Models,” Proceedings
of XI European Signal Processing Conference, Tolouse, France, September 2002.

9. T. J. Flohr, M. W. Marcellin, J. C. Rountree, “Scan-based processing with JPEG2000,” Applications of Digital
Image Processing XXIII, Proceedings of SPIE, Vol. 4115, pp. 347-355, July 2000.

10. D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards,
Kluwer Academic Publishers, Massachusetts, 2002.

11. D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image
Processing, Vol. 9, pp. 1158-1170, July 2000.

12. C. Chrysafis and A. Ortega, “Line-based reduced memory wavelet image compression,” Proceedings of IEEE
Data Compression Conference, Snowbird, UT, pp. 308-407, 1998.

13. E. Ordentlich, D. Taubman, M.J. Weinberger, G. Seroussi, and M. W. Marcellin, "Memory Efficient Scalable
Line-based Image Coding," Proceedings of Data Compression Conference, pp. 218-227, Snowbird, Utah, March
1999.

14. J. C. Dagher, A. Bilgin, M. W. Marcellin, “Resource Constrained Rate Control for Motion JPEG2000,” IEEE
Transactions on Image Processing, Vol. 12, No. 12, pp. 1522- 1529, December 2003.

15. Website: http://aviris.jpl.nasa.gov.

150 SPIE-IS&T/ Vol. 5685

