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ABSTRACT
Compression of a noisy source is usually a two stage problem, involving the operations of estimation (denoising) and
quantization. A survey of literature on this problem reveals that for the squared error distortion measure, the best
possible compression strategy is to subject the noisy source to an optimal estimator followed by an optimal quantizer
for the estimate. What we present in this paper is a simple but sub-optimal vector quantization (VQ) strategy that
combines estimation and compression in one efficient step. The idea is to train a VQ on pairs of noisy and clean
images. When presented with a noisy image, our VQ-based system estimates the noise variance and then performs
joint denoising and compression. Simulations performed on images corrupted by additive, white, Gaussian noise
( AWGN) show significant denoising at various bit rates. Results also indicate that our system is robust enough to
handle a wide range of noise variances, while designed for a particular noise variance.

Keywords: Denoising , Estimation, Compression, Vector Quantization , Non-linear Interpolative Vector Quantiza-
tion, Noisy Source Coding.

1. INTRODUCTION
Image compression deals with reducing the amount of information needed to represent an image. Image compression
techniques can in general be dichotomized as being lossless or lossy. With lossless compression, the image data can
be recovered perfectly but the compression offered is usually moderate. On the other hand, lossy techniques provide
excellent compression, but at the expense of loss of image fidelity. Vector quantization, a popular lossy technique, is
the quantization of an ordered set of real numbers. It has been used with great success to compress signals such as
speech, imagery, and video.

Denoising is essentially the process of estimating the original image data, given a corrupted or noisy version of it.
One of the most widely used assumptions for noise is that it is additive, white, and Gaussian. This means that the
noise afflicts each pixel in the image on an additive basis, possesses equal power at all frequencies in the spectrum
and has a Gaussian shaped probability density function. This paper introduces a joint compression and denoising
technique based on non-linear interpolative vector quantization (NLIVQ).' The training procedure for the VQ is
non-iterative, discrete cosine transform based, and computationally efficient.

2. PROBLEM DESCRIPTION
The problem at hand is to quantize (and thereby compress) a noisy source such that the distortion or error between
the output of the quantizer and the clean (original) source is minimized. Consider Figure 1 where X is the clean
original signal, N is additive white Gaussian noise (AWGN), Y the noisy version of X, and Q(Y) the quantized
version of Y. Mathematically stated, the problem is to minimize

E[d(X, Q(Y))],

for a given distortion measure d.
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Figure 1. Quantizing a noisy source.

Q uantization of a noisy source is a classic problem that has been studied for years. The problem has been
considered in various contexts by many, including Dobrushin and Tsybakov,2 Fine,3 Sakrison,4 Wolf and Ziv,5
Ephraim and Gray,6 and Ayanolu.7 It has been shown in the literature that the optimal solution to the problem
is to cascade the optimal estimator for X (given Y) followed by the optimal quantizer for the estimate. However,
elegant as this solution may be, two significant implementational concerns are associated with it. They are as follows:

. The optimal estimator is in general not known or may be extremely complex.

. Realizing the operations of estimation and quantization separately can be computationally inefficient.

These concerns would seem to justify a system design that trades optimality for simplicity and computational
efficiency.

One straightforward approach to circumvent the aforementioned problems is to combine the operations of estima-
tion and quantization in one step. This was considered by Rao et. al, who implemented an efficient but sub-optimal
VQ system by imposing structural constraints on the encoder while using deterministic annealing to design the VQ.8
Their simulations were done on data from mathematical models which precludes any comparisons with our approach.

3. NON-LINEAR INTERPOLATIVE VECTOR QUANTIZATION
A Vector Quantizer, Q, with an associated codebook, C, ofsize K, consisting of k-dimensional vectors, accomplishes
the mapping

Q:RC*C.

The rate of such a quantizer is said to be r = bits/dimension. The design procedure for such a VQ is
usually iterative and involves optimizing the encoder and the decoder at each iteration. Therefore, to design even a
moderately high dimensional VQ can be a daunting task.

NLIVQ1 was introduced by Gersho as a useful complexity reducing technique for quantizing high dimensional
vectors. The idea behind NLIVQ, as illustrated in Figure 2, is as follows. Let Z be a random vector of dimension k.
As k increases, ordinary full search VQ quickly becomes infeasible. But if it is possible to extract a suitable "feature
vector" , U, of dimension n < k, then Z can be estimated from the vector quantized version, U, of U. This estimation
process of Z from U can be accomplished in one step by designing the interpolative decoder such that it is optimal
for a given encoder. In this case, the encoder and decoder codebooks would be of the same size but of dimensions
n and k respectively. It is of significance to realize here that NLIVQ is a sub-optimal technique, since it does not
jointly optimize the VQ encoder and decoder. But, NLIVQ finds its strength in simplicity. It has been used in a
wide variety of applications such as joint image restoration and compression,9 image super-resolution,1° non-linear
speech prediction,1' lossless predictive image coding,12 multispectral image compression,'3 and enhancement of
transform coding.'4

4. THE SYSTEM DESIGN STRATEGY
The underlying design strategy for our system closely follows the NLIVQ paradigm discussed above with one impor-
tant difference, namely, no feature extraction (and hence interpolation) is performed. This means that the encoder
and decoder codebooks contain codewords of the same dimension. The design procedure can be described as follows.
Let the training set for VQ design be {X, yi}V,, where X is a clean original image and Y2 the corresponding
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noisy image. Decompose each training image into M x M non-overlapping blocks to be used as the training vec-
tors. Initially, a VQ with encoder, E, decoder D, and associated encoder codebook C, is designed to minimize the
mean-squared quantization error

MSE = Eli yJ 12. (1)

The quantized block can be written as

ij = D(E(y23 )) = arg mmii yZ2 ci 12 , (2)
Cl cC

where cj refers to the lth entry of C.

Now, a new decoder D* and its associated codebook C* is derived by minimizing the conditional expectation

E{II — 2E(yZJ) = 1], (3)

where encoder E returns the index of the optimal codebook entry. Let R1 = {X : E(y3 ) l} for a given set of
training blocks. Define entry 1 of C* as the centroid of R1, or

c=i-ki ' xii (4)
cRj

where Ru is the size of the set R1. Finally, the denoised image block is given by

nij = D*(E(yui)) = (5)

5. ALGORITHMS FOR CODEBOOK DESIGN
Designing the encoder codebook C is the central issue while the decoder codebook C* is simply derived from C,
as discussed above. The most commonly used algorithm in VQ design is the Lloyd algorithm.'5 But this simple
design algorithm is iterative and therefore comes with heavy computational requirements which limits its use to low
encoding rates. This motivated us to use a DCT-based, non-iterative technique, described below.'6

DCT-Based Encoder Design

• Add AWGN of a fixed variance, o.2, to each of the N clean training images, X, to produce the noisy training
images, Y.

• An image in the training set is first divided into non-overlapping blocks of size M x M. Then the DCT is
performed on each of the blocks to produce corresponding to the noisy training images.
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Figure 2. NLIVQ strategy.
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Figure 3. System overview.

. Given a budget of R bits/pixel, allocate the available L = R x M x M bits for each block, , such that the
quantization error is minimized.

. A pdf-optimized scalar quantizer is designed for each of the M2 DCT coefficients of y- according to the rate
allocation discussed above. Gaussian and Laplacian distributions are assumed for DC and AC coefficients,
respectively.

. Finally, the VQ codeword index from the encoder is generated by concatenating the binary codes from each of
the scalar quantizers employed in a given block.

NLIVQ Decoder Design

. Compute the encoder index, E(yi ) q, a defined above, for each noisy DCT block,

. Add the corresponding image block, x , from the clean training set to the accumulator a and increment the
counter s.

. Once all of the training blocks have been consumed, each codeword in C is computed as the average

* 1
C = —a

q q

Both the encoder and decoder design algorithms are non-iterative and therefore the only computationally intensive
part is in computing the block statistics (the mean and variance of each of the DCT coefficients) in order that the
bit allocation may be done. The bit allocation at the encoder can be done based on the statistics of either the clean
or noisy images. Both of these strategies have been explored in this paper. In practice, the encoder codebook does
not need to be stored, since it is but implicitly used. Only the interpolative decoder codebook needs to be stored.
With the above algorithms in mind, it would be instructive to look at Figure 3, which provides an overview of the
entire system. It is worth noting that there is no inverse DCT in the decoder.
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6. SIMULATION RESULTS
Simulations were performed using the algorithms described above, using a training set of 53 grayscale "urban"

images, each of size 512 x 512. All results were obtained from experiments done on a test image outside the training
set. There are two parts to this section. The first part deals with the estimation of noise variance in the given image
while the second part discusses the joint compression and denoising of this image.

6.1. Noise variance estimation
The noise in a given image is estimated as follows. For a given block size, an estimate of the variance of the highest
frequency DCT coefficient, , is first obtained from the set of clean training images. Then, the same is done for
the given noisy image, which gives c. Since the noise is assumed to be additive and white, an estimate of the noise
variance can be obtained by the subtracting o- from o. The reason the highest frequency DCT coefficient is used is
because it is expected to contain the least amount of signal energy and therefore result in the most reliable estimate.

Table 1 shows the noise variance estimation performance using blocks of different sizes. The fact that the variance
estimate improves with increasing block size is not surprising because the highest frequency DCT coefficient from
the clean images would contain less signal energy, as block size increases. This does not mean that the block size can
be indefinitely increased in order to get better estimates. For, doing so would result in unreliable estimates, given
a fixed amount of training data. Using the same block size as that used for denoising and compression (discussed
below) would be computationally efficient, since in that case there would be no added burden incurred in doing the
estimation.

6.2. Combined compression and denoising
The signal-to-noise ratio (SNR), measured always with respect to the clean image, is defined as

SNR = 10 log10 signal power dB.
noise power

Training blocks of size 2 x 2 were employed which resulted in 4-dimensional training vectors, with bits being allocated
to each of the DCT coefficients depending on the desired overall bit rate. For example, to realize a bit rate of 2 bpp,
a total of 8 bits were distributed among the 4 DCT coefficients.

Table 2 displays results for the test image corrupted with an AWGN of variance 400. This noise variance equates
to an SNR of 17.02 dB. VQ is a vector quantizer designed to minimize quantization error without any explicit
attempt to incorporate denoising. This quantizer was trained using noisy images at both encoder and decoder. This
system does not result in any significant denoising. The next column shows the performance of VQ clean ,which was
similarly trained with clean images at encoder and decoder. When this VQ is used to compress the noisy test image,
it effects moderate denoising but its performance is limited by the fact that it has no knowledge of the noise.

Table 1. Noise variance estimation performance.

Actual
noise

variance

Estimated noise variance
using a block size of

2x2 3x3 4x4
200 229 214 208
400 431 416 398
800 842 821 807

Table 2. SNR(dB) of decompressed images at different rates (bits/pixel). SNR of noisy image = 17.02 dB.

R VQ noisy VQ clean NLIVQ NA NLIVQ CA
2.0 17.02 18.37 19.01 19.45

LQ 16.70 18.22 17.43 18.30
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Table 3. SNR(dB) at 2 bits/pixel from a system designed for a noise variance of 400 but tested on noise variances
of 200, 400, and 800, respectively.

Noise variance Noisy image NLIVQ CA image
200 20.01 20.65
400 17.02 19.45
800 13.98 17.83

Table 4. SNR(dB) at 2 bits/pixel from a system designed for and tested on noise variances of 200, 400, and 800,
respectively. ________________ ______________ ___________________

Noise variance Noisy image NLIVQ CA image
200 20.01 20.98
400 17.02 19.45
800 13.98 17.90

The columns labeled NLIVQ NA and NLIVQ CA are non-linear interpolative vector quantizers designed as ex-
plained in the previous section (using noisy and clean images at the encoder and decoder, respectively) with the bit
allocations at the encoder based on noisy and clean image characteristics, respectively. That NLIVQ CA outperforms
NLIVQ NA 5 intuitively reasonable. In the latter case, the noise biases the bit allocation procedure to artificially
emphasize high frequencies.

At a rate of 1.0 bpp, it may be noticed that VQciean actually provides a better SNR value than NLIVQ NA This
can be attributed to the fact that the quantizers designed in these simulations are only locally optimal. Overall, the
NLIVQ CA system performs the best, providing SNR gains (over the noisy uncompressed image) of 2.43 dB and 1.28
dB at rates 2.0 bpp and 1.0 bpp, respectively.

In order to investigate the robustness of the NLIVQ CA system, the following simulations were performed. First,
the NLIVQ CA system was designed for a noise variance of 400 at 2 bpp. Then, this system was used on the test
image corrupted by noise of variances 200, 400, and 800 (corresponding to SNRS of 20.01 dB, 17.02 dB, and 13.98
dB), respectively. The results are shown in Table 3.

Next, an NLIVQ CA system was designed for each of the above noise variances, and used on the test image
corrupted by noise with the same variance. These results are given in Table 4. To quantify the loss in not using an
appropriately designed system, we compare the results in Tables 3 and 4. It can be seen that for a noise variance of
200, only a 0.33 dB loss is incurred, while for a noise variance of 800, this loss is as little as 0.07 dB. This indicates
that the system is robust and is capable of handling different noise variances than it was designed for.

The performance in estimating the noise variance as well as joint compression and denoising suggests that the
existing system could be used in a practical scenario as follows. Given a noisy image, the noise variance is first
estimated. Then a suitable quantizer is chosen from a set of pre-designed VQs (for various noise variances in a useful
range) and applied on the image to achieve the desired compression and denoising.
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