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Fig. 1. Reconstruction from partial k-space data. Filtered 
Backprojection (a) 32 views (b) 64 views. TV 
minimization (c) 32 views (d) 64 views. 

 
Fig. 2. Reconstruction time for different number of views 
for TV minimization. 
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Introduction: Compressed Sensing (CS) is an emerging field that suggests that data compression can be implicitly incorporated into the data 
acquisition process [1,2,3]. CS is regarded by some as an alternative to Shannon’s Nyquist sampling theory. The Nyquist sampling theory states that 
the number of samples required to perfectly reconstruct a signal is determined by its bandwidth. In contrast, the CS theory states that by using 
nonlinear algorithms based on convex optimization, certain class of signals can be reconstructed perfectly from what appears to be highly incomplete 
data. More specifically, the CS theory states that sparse or compressible signals can be recovered from a small number of random linear 
measurements. These results are of practical significance to MR imaging, since MR imaging is performed using linear measurements of the object (in 
k-space) and the MR images often have sparse (or compressible) representations (e.g. using wavelets or finite differences). 

The main difficulty in applying these initial theoretical results to MRI lay in performing random 
sampling in k-space. Since such random sampling is difficult for MRI hardware, recent reports 
have suggested some alternative strategies for randomizing the measurements. In [5], a rapid 
imaging method based on randomly perturbed and undersampled spirals was introduced. In [6], 
a randomly undersampled 3DFT trajectory was used for rapid imaging. Random ordering of the 
phase encodes in time was used in [7] to randomly undersample k-t space in dynamic cardiac 
imaging. However, recent developments in CS theory suggest that such random sampling may 
not always be necessary [4]. More specifically, these recent results indicate that CS methods can 
yield exact recovery if the sparsity basis and the measurement system obey the uniform 
uncertainty principle and are incoherent [4]. In this work, we illustrate that it is possible to use 
the CS theory principles with radial trajectories as suggested in [3].  

Theory: Let f  denote the object being imaged, M  the measurement matrix, and g  the 

measurements. In MRI, M  is an undersampled Fourier matrix and g  is the measured k-space 

data such that Mfg = . Furthermore, let (f)Ψ  denote the projection of the object f  onto a 

sparsity basis Ψ  where (f)Ψ  is sparse. The main result of CS theory suggests that f  is the 

unique solution to the convex optimization problem 

1
min (f)

f
Ψ  subject to Mfg =  

with very high probability [1,2,3]. Recent results also indicate that the theory can be further 
extended to cover compressible signals in addition to the signals that are truly sparse [4]. 
Method: We illustrate that the CS theory can be applied to reconstruct MR images from 
radially undersampled k-space data. We restate the reconstruction problem as a minimization of 
the total variation (TV) of the image f  with quadratic constraints 

TVf
fmin  subject to ε<− gMf
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where ε  controls the fidelity between the measurements and the reconstruction and is used to 
account for noise in the measurements. TV of image f  is the sum of the magnitudes of the 

discretized spatial gradient of the image given by  
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. In our experiments, we took an 

image which was originally acquired using 256 radial views and 256 points along each radial 
view using a SE pulse sequence. Using this image, we created undersampled datasets by only 

keeping partial data in k-space along a few radial lines. We then reconstructed images from these partial datasets using the TV minimization 
formulation as stated above. For comparison, we also reconstructed images using traditional filtered backprojection. 
Results and Discussion: Figure 1 illustrates the images obtained using different reconstruction algorithms and different number of radial views. 
Figures 1a and 1b illustrate the images reconstructed using filtered backprojection from 32 and 64 radial views, respectively. Images reconstructed 
using the TV minimization method from 32 and 64 radial views are illustrated in Figs. 1c and 1d, respectively. Note that the TV minimization 
method yields high resolution images with significantly reduced aliasing artifacts. A plot of the TV minimization reconstruction times for different 
number of radial views using a MatlabTM implementation on a computer with a 3.4 Ghz Intel XeonTM processor is given in Figure 2. It is interesting 
to note that the reconstruction time reduces with increased number of views since convergence can be achieved faster using more data. In 
comparison, the filtered backprojection reconstruction (implemented in C) requires only a few seconds (including I/O) on the same computer.  
Conclusion:  We illustrated that radial k-space trajectories can be used together with the emerging CS theory. While the reconstruction times of the 
proposed method is considerably longer than those of the traditional filtered backprojection, the method significantly reduces the undersampling 
artifacts and results in high resolution images.  
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