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ABSTRACT

There has been recent interest in using reversible integer
wavelet transforms for image compression. These trans-
forms allow both lossless and lossy decoding — by resolution
and/or accuracy — using a single bitstream. We investigate
the lossless and lossy performance of these transforms in
the JPEG-2000 Verification Model 0. The lossless compres-
sion performance of the presented method is comparable to
JPEG-LS. The lossy performance is quite competitive with
other efficient lossy compression methods.

1. INTRODUCTION

The wavelet transform has been widely used in image com-
pression. However, until recently, its use has been limited to
lossy compression applications. This is due to the fact that
most wavelet transforms produce floating-point coeficients
which are not well-suited for lossless coding applications.
With the introduction of wavelet transforms that map in-
tegers to integers, there has been interest in using wavelet
transforms for lossless image coding [1, 2, 3, 4, 5].

Using reversible integer wavelet transforms for compres-
sion of images has several advantages. Perhaps the most
important one is that, through the use of appropriate tech-
niques, a fully embedded bitstream can be generated. In
other words, the decoder can extract a lossy version of the
image, possibly at reduced resolution, at a desired rate from
the bitstream, and continue to decode at higher and higher
rates, until the image is perfectly reconstructed. This rate
scalability is valuable in many applications. By integrating
lossy and lossless compression in a natural fashion, a single
image compression method provides excellent lossy perfor-
mance as well as supporting the many applications that
require the ability to exactly recover the original image.

In this paper, we investigate both lossless and lossy per-
formance of reversible integer wavelet transforms. Animage
coder consisting of a reversible integer wavelet transform
and a bit plane coder is presented. The bitplane coder
used in this work is the same coder employed in JPEG-
2000 Verification Model 0. We compare the lossless com-
pression performance of the presented scheme with that of
other state-of-the-art lossless compression schemes in the
literature, including wavelet-based, and non-wavelet based
coders.
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We also compare the progressively decoded lossy perfor-
mance of several reversible integer wavelet transforms, and
compare these with the popular 7x9 wavelet filter of [6] that
produces floating-point coefficients.

2. REVERSIBLE INTEGER WAVELET
TRANSFORMS

The wavelet transform, in general, produces floating point
coefficients. Although these coefficients can be used to re-
construct the original image perfectly in theory, the use
of finite precision arithmetic and quantization results in a
lossy scheme.

Recently, reversible integer wavelet transforms, i.e.
wavelet transforms that transform integers to integers and
allow perfect reconstruction of the original signal, have been
introduced [1, 2, 3, 4]. In [3], Calderbank et al. introduced
a method for building reversible integer wavelet transforms
using the lifting scheme of [7]. Here, the input is first split
into even and odd indexed samples. Let z(n) be the input
signal. Then,
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and
dn] = z[2n + 1. (2)
Next, M alternating “dual lifting” and “lifting” steps are

applied using
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respectively, for 1 = 1,---, M. Finally, the even samples
s(*)[n] become the low pass coefficients s[n], and the odd

samples d(™ )[n] become the high pass coeflicients d[n], after
scaling by a factor K, such that

d[n] = Kd*)[n] (5)



and

s[n] = s*[n)/K. (6)

For the transforms considered in this work K = 1. The
inverse transform is obtained by reversing the steps of the
forward transform. The reader is referred to [3] for details.

In this work, we use the reversible integer wavelet trans-
forms presented below. Here, the notation (N, N) repre-
sents a transform with N and N vanishing moments in the
analysis and synthesis high pass filters, respectively. The
notation [m, n] represents a transform with m coefficients
in the low-pass analysis filter and n coefficients in the high-
pass analysis filter.

¢ A (2,2) transform [3]:

din) = alzn +1] = |3 (el20] +al2n+ ) + 3] (7)

stu) = 2l2n] + (o~ 1]+ dla) + 2] (8)
o A (4,2) transform [3]:
d[n] = z[2n + 1] — [19—6(z[zn] +z[2n +2))
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o A (4,4) transform [3]:
d[n] = z[2n + 1] — [-5—6(35[271.] + z[2n + 2])
1 1 (11)
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¢ A (2,4) transform [3]:
d[n] = z[2n + 1] I_%(z:[Zn] +af2n+2)) + 3
(13)
sfn] = af2n] + |37 (dln = 1] + dln])
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e A (6,2) transform [3]:
d[n] = o[2n +1] — L;—sg(x[zn] +2[2n +2))
- %(z[Zn—2]+z[2n+4]) (15)
+ 22—6(1-[271 — 4]+ o2 +6]) + %J
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s[n] = o[2n] + [%(d[n — 1)+ dfn]) - %J. (16)
o A (242,2) transform [3]:
d(”[n] =z[2n +1] — [%(z[2n] +z[2n +2]) + %J
an
sl = alzn) + [5(@Pn 1+ dV[a)) + 7]
dfn] = dDfn] = | 7o(=sn — 1]+ s[n]
(19)

+oln+1] = sln+2) + 3.

¢ A [2,10] transform used in the current version of the
CREW algorithm [1]:

dM[n] = z[2n + 1] — z[2n] (20)

W1y
sln) = af2n] + | 251 (21)

dfn] = dfn] = | 2(22(sln +1] = sfn — 1)
+3(s[n — 2] — s[n +2))) + %j. (22)
o An S+P transform [2]:

dV[n] = z[2n + 1] — z[2n] (23)

Dy
sln) = =f2n] + | 1) (24)

dn] = V] + | 3 — 1]~ sfrn])

+ 2 olm] = sfn+ 1) + 2D+ 1] 4 5] (29)

3. PROGRESSIVE TRANSMISSION

For progressive transmission, the wavelet coefficients need
to be arranged in order of importance. Using mean-squared
error (MSE) as the distortion measure, the information that
will produce a larger decrease in MSE can be considered to
be more important.

Let I be the original image, and T be an orthonormal
transform. The transform coefficients C are computed using

C=TIL (26)
If the coefficients are quantized and sent to the decoder, the
decoder produces C as an approximation of C, and obtains
the reconstructed image I by

i=171C (27)



Since orthonormal transforms preserve the L, norm, the
MSE between the original and reconstructed images is given
by

L= Lic—ep
MSE = I - I|f = T ¢ = €]

=+ 3 31069 - O )P

where N is the number of pixels in the image, and C(z,y)
denotes the transform coefficient at coordinate (z,y).

However, the reversible integer transforms used in this
work are not orthonormal transforms. For these transforms,
the MSE can often be computed by weighting the |C(z,y)—
C(z,y)|? terms for each subband in the sum in (29). These
scaling factors for each subband can be computed using the
method described in [8].

The scaling factors computed using the method in [8] are
usually floating point numbers. They can not be used on
the integer wavelet coefficients, since scaling these integers
by a floating point number would create a floating point
number. We normalize the scaling factors so that the min-
imum scaling factor is 1, the round each scaling factor to
the nearest power of two. The scaling factors for the (2,4)
transform for 3 levels of dyadic decomposition are shown in
Figure 1.
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Figure 1: Weights for the (2,4) transform for a 3 level dyadic
decomposition.

4. EFFICIENT BIT PLANE CODING

Equation (29) suggests that for efficient progressive trans-
mission larger transform coefficients (after scaling) should
be transmitted first, since a larger coefficient would result
in a larger decrease in MSE. If the coefficients are repre-
sented in binary notation, it would be further beneficial to
scan the bitplanes of transform coefficients starting from
the most significant bitplane to the least significant bit-
plane, and transmit the ‘1’ bits in each bitplane. This ob-
servation is based on the fact that a ‘1’ in a higher bit-
plane would produce a larger decrease in MSE, than a ‘1’
in a lower bitplane. In the literature, several image com-
pression methods that benefit from this property have been
proposed {1, 2, 9, 10, 11, 12].
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The JPEG-2000 VM 0 bitplane coder [13] used in this
work has similarities to [1, 10, 11, 12, 14] but has several
unique aspects. It uses an embedding principle in which
each bitplane within a wavelet subband is “de-interleaved”
into three binary sequences: 1) predicted significance bits,
2) refinement bits, 3) predicted insignificance bits. The de-
fault encoding order is to encode one subband at a time, in
order from lowest to highest resolution. Within each sub-
band, bitplanes are encoded from most- to least-significant.
Within each bitplane, the bits are de-interleaved and en-
coded by an adaptive binary arithmetic coder in order 1),
2), 3). The image is always encoded losslessly.

During decoding of a bitplane at any given resolution
layer (i.e., across all subbands within the resolution of the
decoded image), bits from de-interleaved sequence 1) are
always decoded before any bits are decoded from sequence
2), which in turn are decoded before any bits from sequence
3). (We have found this progressive transmission order-
ing to be nearly optimal when using floating point wavelet
transforms.) This decoding process can stop at any point to
produce a lossy result. The translation between the encoder
ordering and the ordering used by the decoder is handled
by a parser.

An important feature of the bitplane coder is that the
encoding has no inter-sequence dependencies (e.g., no par-
ent/child contexts). This enables the encoded bitstream to
be parsed into any arbitrary order, depending on the appli-
cation. For example, re-synch markers can be inserted after
each encoded sequence if the compressed bitstream is or-
dered by sequence. This enables a degree of error detection
and concealment when transmitting encoded images over
noisy channels. The usual “embedded” progressive by accu-
racy/SNR ordering is accommodated by ordering the data
by bitplane, and within each bitplane, in de-interleaved or-
der. Subbands can be emphasized in arbitrary ways, e.g.,
to compensate for characteristics of an output device, us-
ing scaling factors analogous to those described in Section
3. Finally, the independent bitplane coding of subbands
facilitates parallel hard/software implementation.

5. EXPERIMENTAL RESULTS

Table 1 presents the lossless compression results obtained
using different integer wavelet transforms on a set of JPEG
2000 test images, and Table 2 presents a comparison of
these results with other lossless compresion techniques in
the literature. Similarly, Table 3 presents the lossless com-
pression results of different integer wavelet transforms on
other standard images used in the literature, and Table 4
compares these with other lossless compression methods in
the literature. The lossless performance of the presented
approach is comparable to JPEG-LS.

Tables 5, and 6 compare the progressive compression per-
formances of the integer wavelet transforms on Barbara and
Goldhill images, respectively. In the tables “7x9 FP” entry
gives the results using 7x9 filters of [6] with floating-point
coefficients, scalar quantization, and progressive decoding
from a single bitstream encoded at approximately 4 bpp.
The results in these tables were obtained using scaling fac-
tors as discussed in the previous sections. (Note that scaling
does not change the lossless performance of the algorithm.)
These results are for progressive decoding from the losslessly



encoded bitstream. We also include the results obtained us-
ing SPIHT with S+P transform for comparison.

Although the lossy performance using integer transforms
is not quite as good as that for floating point transforms,
integer transforms are less complex and offer excellent pro-
gressive decoding performance for the many applications
that demand the capability to losslessly recover the origi-
nal image. Improved lossy performance when using integer
transforms is a pursuit of our on-going work.
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Table 1: Comparison of the lossless compression perfor-
mances of different integer wavelet transforms on JPEG-
2000 images (in bpp).

Image

Wavelet | Target | Bike | Woman | Cafe | Aerial2
(4,4) 2.390 | 4.402 4.364 5.180 5.219
(4,2) 2.290 4.409 4.368 5.180 5.222
(2,4) 2.239 | 4.430 4.409 5.217 5.261
(6,2) 2.368 | 4.420 4.373 5.195 5.229

(242,2) 2.382 | 4.429 4.383 5.194 5.225
{2,10] 2.363 | 4.434 4.392 5.208 5.230
(2,2) 2.113 | 4.414 4.393 5.194 5.243
S+P 2.233 | 4.415 4.378 5.190 5.233

Table 2: Comparison of different lossless compression meth-
ods using JPEG-2000 images (in bpp).

Image
Method Target | Bike | Woman | Cafe | Aerial2
SPIHT [2] 2.646 | 4.480 4.442 5.283 5.332
LOCO-I[15] | 2.186 4.356 4,451 5.092 5.288
CALIC [16] 2.291 4.196 4.287 4.927 5.142
Proposed
with (2,2) 2.113 4.414 4.393 5.194 5.243
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Table 3: Comparison of the lossless compression perfor-
mances of different integer wavelet transforms on other im-
ages (in bpp).

Image
Wavelet | Barbara | Goldhill | Lenna
%) 4.582 4683 | 4.158
(4,2) 4.612 4.686 4.166
(2,4) 4.678 4.705 4.208

(6,2) 4.596 4689 | 4.170
(2+2,2) | 4.625 4690 | 4.182
[2,10] | 4.653 4711 | 4.182
T (2,2) 4.699 4690 | 4.197
S+P 4,647 4704 | 4.187

Table 6: Comparison of the lossy compression performances
of different integer wavelet transforms with scaling on Gold-
Table 4: Comparison of different lossless compression meth- hill (PSNR (dB)).
ods using other images (in bpp).

Rate (bpp)
0.5 0.7

Image Wavelet 0.1 0.2 . 1.0

Method Barbara | Goldhill | Lenna 7x9 FP 27.77 | 29.82 | 33.20 | 34.67 | 36.80
SPIHT 2] 4.711 4.778 4,188 (4,4) 27.33 | 29.14 | 32.65 | 33.82 | 35.73
LOCO-I [15] 4.863 4.712 4.236 (4,2) 27.30 | 29.09 | 32.56 | 33.73 | 35.61
CALIC [16] | 4.626 1629 | 4.101 (2,4) | 27.17 | 29.21 | 32.59 | 33.85 | 35.84
Proposed (6,2) 27.00 | 28.90 | 32.29 | 33.63 | 35.50
with (4,4) 4.582 4.683 4.158 (2+2,2) 27.33 | 29.49 | 32.83 | 34.12 | 35.95

[2,10] | 27.68 | 29.67 | 32.87 | 34.28 | 36.16
(2,2) | 27.13 | 29.23 | 32.63 | 33.88 | 35.85
STP | 27.67 | 29.62 | 32.86 | 34.22 | 36.00
S+P
w/SPIHT | 27.70 | 29.49 | 32.60 | 34.08 | 35.80

Table 5: Comparison of the lossy compression performances
of different integer wavelet transforms with scaling on Bar-

bara (PSNR (dB)).

Rate (bpp)
Wavelet 0.1 0.2 0.5 0.7 1.0
7x9 FP 24.18 | 26.65 | 31.64 | 34.17 | 36.90
(4,4) 23.89 | 26.41 | 31.14 | 33.35 | 35.65
(4,2) 23.69 | 26.13 | 30.85 | 33.14 | 35.43
(2,4) 23.97 | 26.14 | 30.65 | 32.92 | 35.30
(6,2) 23.50 | 25.96 | 30.77 | 33.20 | 35.60
(242,2) | 23.94 [ 26.20 | 31.05 | 33.38 | 35.80
[2,10] 24.04 | 26.44 | 31.36 | 33.54 | 36.32
(2,2) 23.82 | 25.86 | 30.25 | 32.45 | 34.91
S+P 23.92 | 26.35 | 31.04 | 33.42 | 35.92
StpP
w/SPIHT | 23.89 | 26.05 | 30.57 | 33.02 | 35.53
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