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ABSTRACT

Quantization of a noisy source is a classic problem. Al-
though, optimal solutions have been shown to exist under
certain assumptions, they are usualy either extremely dif-
ficult to implement or computationally very intensive. The
vector quantization (VQ) based strategy we present in this
paper is simple, efficient, and capable of joint compression
and denoising of images corrupted by additive white Gaus-
sian noise of fixed variance. The VQ istrained on pairs of
clean original images and their respective noisy versions.
ThisVQ isthen capable of taking a noisy image as input to
its encoder, compressing it, and then producing a less noisy
image at the output of its decoder. Experiments performed
on test images (inside and outside thetraining set) produced
significant denoising at various hit rates. Results also indi-
cate that our system is capable of handling a wide range of
noise variances, while designed for a particular noise vari-
ance.

1. INTRODUCTION

Vector Quantization has been widely used in the compres-
sion of images [1]. In the past few years, VQ has aso been
used to perform variousimage processi ng tasks concurrently
with compression [2]. This paper introduces a joint com-
pression and denoising technique based on non-linear inter-
polativevector quantization (NLIVQ) [3]. Thetraining pro-
cedurefor the VQisnon-iterative, discrete cosinetransform
based, and computationally efficient.

2. QUANTIZATION OF A NOISY SOURCE

Consider Figure1 where X istheclean original signa, N is
additivewhite Gaussian noise (AWGN), Y thenoisy version
of X, and Q(Y") thequantized version of Y. Thegoal inthis
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case isto minimize
Eld(X, Q(Y))],

for a given distortion measure d. Thisisin fact a classic
problem referred to in literature as the noisy source cod-
ing problem and worked on by many, including Dobrushin
and Tsybakov [4], Fine [5], Sakrison[6], Wolf and Ziv [7],
Ephraim and Gray [8], and Ayanoglu [9].
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Figure 1: Quantizing a noisy source.

It has been suggested in theliterature[4, 5, 6, 7, 8, 9] that
for the squared error distortion measure, the optimal solu-
tion to the problem is to cascade the optimal estimator for
X given Y followed by the optimal quantizer for the esti-
mate. However, there are two practical concerns associated
with implementing this solution. First, the optimal estima:
torisingenera not knownor may beextremely complex and
second, realizing the operations of estimation and quantiza-
tion separately can be computationdly inefficient. There-
fore, from an implementation point of view, a trade of op-
timality for simplicity and computational gain might be in
order. One straightforward way to achievethisisto combine
the operations of estimation and quantization in one step.
Thiswas considered by Rao et al., who implemented an &f-
ficient but sub-optima VQ system by imposing structura
constraintson the encoder while using deterministic anneal -
ing to design the VQ [10].

Non-linear interpolative vector quantization, the basis of
our system, provides a simple strategy to achieve jointly
sub-optimal estimation (denoising) and quantization. This,
in conjunction with a unique DCT-based, non-iterative VQ
design procedure, results in our system being simple, com-
putationally efficient, and yet robust.



3. NON-LINEAR INTERPOLATIVE VECTOR
QUANTIZATION

Vector quantization is simply the quantization of a vector,
an ordered set of rea numbers. A vector quantizer, @,
with an associated codebook, C', of size K, consisting of k-
dimensional vectors can be thought of as the mapping

Q:RF—C.

The VQ just described is said to have arate of » =
bits’dimension. To design such a VQ even at moderately
high rates can be a daunting task.

NLIVQ[3] isatechniquethat circumventsthecomplexity
barrier associated with the design procedure in a conceptu-
ally simplefashion, that can be explained as follows. Let 2
bearandom vector of dimension k. Ask increases, ordinary
full search VQ quickly becomes infeasible. But if it is pos-
sibleto extract a suitable “feature vector”, U, of dimension
n < k, then Z can be estimated from the vector quantized
version, U, of U. Thisestimation process of Z from U can
be accomplished in one step by designing the interpolative
decoder such that itisoptimal for agiven encoder. 1t may be
noted herethat the encoder and decoder codebookswould be
of the same size but of dimensions n and & respectively. It
isimportant to note here that the choice of the feature vector
is dictated entirely by the needs of the application.

In [11], Sheppard et al. introduced a non-linear inter-
polative vector quantizer for image restoration. The design
strategy we have adopted for denoising, as in Figure 2, is
very similar in spirit and can be described as follows. Let
{X% Y} | be asequence of pairs of clean origina and
noi sy training images, respectively. Decompose each image
into M x M non-overlapping training blocks. Let =% and
¥ be jthblocksfrom X? and Y respectively. Assume that
theencoder E, decoder D, and the associated encoder code-
book ', aregivenfor aV Q that minimizesthe mean-squared
error

loga K
k

MSE = El| y” — g7 |- D
The quantized block 3/ is chosen as
yy:D(E(y]))IafgfglnHy’—Cl - @
cre

where ¢; refersto the ith entry of C'.
Next, anew decoder D* and its associated codebook C™*
is derived by minimizing the conditional expectation
Elll 27 =27 [|"[E(y") = 1], 3)

where encoder E returns theindex of the optimal codebook
entry. For a given set of training blocks, let &; = {2% :
E(y"”) = l}. Defineentry [ of C* asthe centroid of 7, or

1 N
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where |R;| denotes the cardindity of R;. Finaly, the
NLIVQ denoising algorithmis given by
jij — D*(E(y”)) — cE(y’j)’ (5)

where %/ is the denoised image block.
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Figure2: NLI1VQ based denoising strategy.

4. ALGORITHMSFOR CODEBOOK DESIGN

Designingthe encoder codebook C' isthe central issuewhile
the decoder codebook C* issimply derived from ', as dis-
cussed above. The most commonly used algorithm in VQ
design isthe Lloyd algorithm [12]. But thissimple design
algorithmisiterative and therefore comes with heavy com-
putational requirementswhich limitsitsusetolow encoding
rates. Thismotivated usto usethe DCT-based, non-iterative
techniqueintroduced in [11].

DCT-Based Encoder Design

o Add AWGN of afixed variance, o2, to each of the N
cleantrainingimages, X, to producethenoisy training
images, Y.

e Animage in thetraining set is first divided into non-
overlapping blocks of size M x M. Then the DCT is
performed on each of the blocksto produce %/ and %/
corresponding to the clean and noisy training images,
respectively.

¢ Given a budget of R bits/pixel, allocate the available
L = R x M x M bitsfor each block, 4", such that the
guantization error is minimized.



A pdf-optimized scaar quantizer is designed for each
of the M2 DCT coefficients of y*/ according to therate
alocation discussed above. Gaussian and Laplacian
distributions are assumed for DC and AC coefficients,
respectively.

o Finally, the codeword index from the encoder is gener-
ated by concatenating the binary codesfrom each of the
scalar quantizers employed in a given block.

NLI1VQ Decoder Design

o Compute the encoder index, E(y") = ¢, as defined
above, for each noisy DCT block, %/ .

¢ Add thecorresponding clean DCT block, =/, tothe ac-
cumulator a; and increment the counter 5y

e Once dl of the training blocks have been consumed,
each codeword in C* is computed as the average
1

ok
C —S*Clq.
q

5. RESULTS

Simulationswere performed using the al gorithms described
above. The training set for VQ design consisted of 53
grayscale “urban” images, each of size 512 x 512. The
signal-to-noiseratio(SNR), measured alwayswith respect to
the clean image, is defined as

signa power 4B

SNR = 10 log10—
noi se power

Training blocksof size 2 x 2 were employed which resulted
in 4-dimensional training vectors, with bits being all ocated
to each of the DCT coefficients depending on the desired
overall bit rate. For example, to realize abit rate of 2 bpp, a
total of 8 bitsweredistributed among the4 DCT coefficients.

Table 1 displays results for a test image (outside the
training set) that was corrupted with AWGN of variance
400. This noise variance eguates to an SNR of 17.02 dB.
VQ 1,015y iSavector quantizer designed to minimize quanti-
zation error without any explicit attempt to incorporate de-
noising. This quantizer was trained using noisy images at
both encoder and decoder. Thissystemdoesnot resultinany
significant denoising. The next column shows the perfor-
mance of VQ .jcqn, Which was similarly trained with clean
images at encoder and decoder. When this VQ is used to
compress the noisy test image, it effects moderate denois-
ing but its performance is limited by the fact that it has no
knowledge of the noise.

The columns labeled NLIVQ x4 and NLIVQ ¢4 are
non-linear interpolative vector quantizers designed as ex-
plained in the previous section (using noisy and clean im-
ages at the encoder and decoder, respectively) with the bit

allocations at the encoder based on noisy and clean image
characteristics, respectively. That NLIVQ ¢4 outperforms
NLIVQ w4 isintuitively reasonable. In thelatter case, the
noise biases the bit alocation procedure to artificially em-
phasize high frequencies.

At arate of 1.0 bpp, it may be noticed that V Qi aC-
tually provides a better SNR vaue than NLIVQ n 4. This
can be attributed to the fact that the quantizers designed
in these simulations are only locally optimal. Overal, the
NLIVQ ¢4 system performsthe best, providing SNR gains
of 2.43dB and 1.28 dB at rates 2.0 bpp and 1.0 bpp, respec-
tively.

In order to investigate the robustness of the NLIVQ ¢4
system, thefollowingsimulationswereperformed. First, the
NLIVQ ¢4 system was designed for anoise variance of 400
at 2 bpp. Then, this system was used on the test image cor-
rupted by noise of variances 200, 400, and 800 (correspond-
ing to SNRs of 20.01 dB, 17.02 dB, and 13.98 dB), respec-
tively. The resultsare shownin Table 2.

Next, an NLIVQ ¢ 4 system was designed for each of the
above noise variances, and used on the test image corrupted
by noise with the same variance. These resultsare given in
Table 3. To quantify the loss in not using an appropriately
designed system, we compare theresultsin Tables 2 and 3.
It can be seen that for anoisevariance of 200, only a0.33dB
lossisincurred, whilefor anoisevariance of 800, thislossis
aslittleas 0.07 dB. Thisindicates that the system is robust
and is capable of handling different noise variances than it
was designed for.

Table 1: SNR(dB) of decompressed images at different
rates(bits/pixel). SNR of noisy image = 17.02 dB.

R VQ noisy VQ clean NLIVQ NA NLIVQ CA
2.0 17.02 18.37 19.01 19.45
1.0 16.70 18.22 17.43 18.30

Table2: SNR(dB) at 2 bits/pixe from asystem designed for
anoise variance of 400 but tested on noise variances of 200,

400, and 800, respectively.

Noisevariance | Noisy image | NLIVQ ¢4 image
200 20.01 20.65
400 17.02 19.45
800 13.98 17.83

Table 3: SNR(dB) at 2 bits/pixe from asystem designed for
and tested on noise variances of 200, 400, and 800, respec-

tively.
Noisevariance | Noisy image | NLIVQ ¢4 image
200 20.01 20.98
400 17.02 19.45
800 13.98 17.90
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