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ABSTRACT

Quantization of a noisy source is a classic problem. Al-
though, optimal solutions have been shown to exist under
certain assumptions, they are usually either extremely dif-
ficult to implement or computationally very intensive. The
vector quantization (VQ) based strategy we present in this
paper is simple, efficient, and capable of joint compression
and denoising of images corrupted by additive white Gaus-
sian noise of fixed variance. The VQ is trained on pairs of
clean original images and their respective noisy versions.
This VQ is then capable of taking a noisy image as input to
its encoder, compressing it, and then producing a less noisy
image at the output of its decoder. Experiments performed
on test images (inside and outside the training set) produced
significant denoising at various bit rates. Results also indi-
cate that our system is capable of handling a wide range of
noise variances, while designed for a particular noise vari-
ance.

1. INTRODUCTION

Vector Quantization has been widely used in the compres-
sion of images [1]. In the past few years, VQ has also been
used to perform various image processing tasks concurrently
with compression [2]. This paper introduces a joint com-
pression and denoising technique based on non-linear inter-
polative vector quantization (NLIVQ) [3]. The training pro-
cedure for the VQ is non-iterative, discrete cosine transform
based, and computationally efficient.

2. QUANTIZATION OF A NOISY SOURCE

Consider Figure 1 whereX is the clean original signal,N is
additive white Gaussian noise (AWGN),Y the noisy version
ofX, andQ(Y ) the quantized version ofY . The goal in this
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case is to minimize

E[d(X;Q(Y ))];

for a given distortion measure d. This is in fact a classic
problem referred to in literature as the noisy source cod-
ing problem and worked on by many, including Dobrushin
and Tsybakov [4], Fine [5], Sakrison[6], Wolf and Ziv [7],
Ephraim and Gray [8], and Ayanog̃lu [9].
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Figure 1: Quantizing a noisy source.

It has been suggested in the literature [4, 5, 6, 7, 8, 9] that
for the squared error distortion measure, the optimal solu-
tion to the problem is to cascade the optimal estimator for
X given Y followed by the optimal quantizer for the esti-
mate. However, there are two practical concerns associated
with implementing this solution. First, the optimal estima-
tor is in general not known or may be extremely complex and
second, realizing the operations of estimation and quantiza-
tion separately can be computationally inefficient. There-
fore, from an implementation point of view, a trade of op-
timality for simplicity and computational gain might be in
order. One straightforward way to achieve this is to combine
the operations of estimation and quantization in one step.
This was considered by Rao et al., who implemented an ef-
ficient but sub-optimal VQ system by imposing structural
constraints on the encoder while using deterministic anneal-
ing to design the VQ [10].

Non-linear interpolative vector quantization, the basis of
our system, provides a simple strategy to achieve jointly
sub-optimal estimation (denoising) and quantization. This,
in conjunction with a unique DCT-based, non-iterative VQ
design procedure, results in our system being simple, com-
putationally efficient, and yet robust.



3. NON-LINEAR INTERPOLATIVE VECTOR
QUANTIZATION

Vector quantization is simply the quantization of a vector,
an ordered set of real numbers. A vector quantizer, Q,
with an associated codebook, C, of size K, consisting of k-
dimensional vectors can be thought of as the mapping

Q : Rk ! C:

The VQ just described is said to have a rate of r = log2K

k

bits/dimension. To design such a VQ even at moderately
high rates can be a daunting task.

NLIVQ [3] is a technique that circumvents the complexity
barrier associated with the design procedure in a conceptu-
ally simple fashion, that can be explained as follows. Let Z
be a random vector of dimension k. As k increases, ordinary
full search VQ quickly becomes infeasible. But if it is pos-
sible to extract a suitable “feature vector”, U , of dimension
n < k, then Z can be estimated from the vector quantized
version, Û , of U . This estimation process of Z from Û can
be accomplished in one step by designing the interpolative
decoder such that it is optimal for a given encoder. It may be
noted here that the encoder and decoder codebooks would be
of the same size but of dimensions n and k respectively. It
is important to note here that the choice of the feature vector
is dictated entirely by the needs of the application.

In [11], Sheppard et al. introduced a non-linear inter-
polative vector quantizer for image restoration. The design
strategy we have adopted for denoising, as in Figure 2, is
very similar in spirit and can be described as follows. Let
fXi; Y igNi=1 be a sequence of pairs of clean original and
noisy training images, respectively. Decompose each image
into M �M non-overlapping training blocks. Let xij and
yij be jth blocks fromXi and Y i respectively. Assume that
the encoder E, decoderD, and the associated encoder code-
bookC, are given for a VQ that minimizes the mean-squared
error

MSE = Ek yij � ~yij k
2
: (1)

The quantized block ~yij is chosen as

~yij = D(E(yij)) = arg min
cl�C

k yij � cl k
2
; (2)

where cl refers to the lth entry of C.
Next, a new decoder D� and its associated codebook C�

is derived by minimizing the conditional expectation

E[k xij � ~xij k
2
jE(yij) = l]; (3)

where encoder E returns the index of the optimal codebook
entry. For a given set of training blocks, let Rl = fxij :
E(yij ) = lg. Define entry l of C� as the centroid of Rl, or

c�l =
1

jRlj

X

xij�Rl

xij (4)

where jRlj denotes the cardinality of Rl. Finally, the
NLIVQ denoising algorithm is given by

~xij = D�(E(yij )) = c�
E(yij); (5)

where ~xij is the denoised image block.
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Figure 2: NLIVQ based denoising strategy.

4. ALGORITHMS FOR CODEBOOK DESIGN

Designing the encoder codebookC is the central issue while
the decoder codebook C� is simply derived from C, as dis-
cussed above. The most commonly used algorithm in VQ
design is the Lloyd algorithm [12]. But this simple design
algorithm is iterative and therefore comes with heavy com-
putational requirements which limits its use to low encoding
rates. This motivated us to use the DCT-based, non-iterative
technique introduced in [11].

DCT-Based Encoder Design

� Add AWGN of a fixed variance, �2, to each of the N
clean training images,Xi, to produce the noisy training
images, Y i.

� An image in the training set is first divided into non-
overlapping blocks of size M �M . Then the DCT is
performed on each of the blocks to produce xij and yij

corresponding to the clean and noisy training images,
respectively.

� Given a budget of R bits/pixel, allocate the available
L = R�M �M bits for each block, yij , such that the
quantization error is minimized.



� A pdf-optimized scalar quantizer is designed for each
of theM2 DCT coefficients of yij according to the rate
allocation discussed above. Gaussian and Laplacian
distributions are assumed for DC and AC coefficients,
respectively.

� Finally, the codeword index from the encoder is gener-
ated by concatenating the binary codes from each of the
scalar quantizers employed in a given block.

NLIVQ Decoder Design

� Compute the encoder index, E(yij) = q, as defined
above, for each noisy DCT block, yij .

� Add the corresponding clean DCT block, xij, to the ac-
cumulator a�q and increment the counter s�q .

� Once all of the training blocks have been consumed,
each codeword in C� is computed as the average

c�q =
1

s�q
a�q :

5. RESULTS

Simulations were performed using the algorithms described
above. The training set for VQ design consisted of 53
grayscale “urban” images, each of size 512 � 512. The
signal-to-noise ratio(SNR), measured always with respect to
the clean image, is defined as

SNR = 10 log10
signal power
noise power

dB.

Training blocks of size 2�2 were employed which resulted
in 4-dimensional training vectors, with bits being allocated
to each of the DCT coefficients depending on the desired
overall bit rate. For example, to realize a bit rate of 2 bpp, a
total of 8 bits were distributedamong the 4 DCT coefficients.

Table 1 displays results for a test image (outside the
training set) that was corrupted with AWGN of variance
400. This noise variance equates to an SNR of 17.02 dB.
VQ noisy is a vector quantizer designed to minimize quanti-
zation error without any explicit attempt to incorporate de-
noising. This quantizer was trained using noisy images at
both encoder and decoder. This system does not result in any
significant denoising. The next column shows the perfor-
mance of VQ clean, which was similarly trained with clean
images at encoder and decoder. When this VQ is used to
compress the noisy test image, it effects moderate denois-
ing but its performance is limited by the fact that it has no
knowledge of the noise.

The columns labeled NLIVQ NA and NLIVQ CA are
non-linear interpolative vector quantizers designed as ex-
plained in the previous section (using noisy and clean im-
ages at the encoder and decoder, respectively) with the bit

allocations at the encoder based on noisy and clean image
characteristics, respectively. That NLIVQ CA outperforms
NLIVQ NA is intuitively reasonable. In the latter case, the
noise biases the bit allocation procedure to artificially em-
phasize high frequencies.

At a rate of 1.0 bpp, it may be noticed that V Qclean ac-
tually provides a better SNR value than NLIVQ NA. This
can be attributed to the fact that the quantizers designed
in these simulations are only locally optimal. Overall, the
NLIVQ CA system performs the best, providing SNR gains
of 2.43 dB and 1.28 dB at rates 2.0 bpp and 1.0 bpp, respec-
tively.

In order to investigate the robustness of the NLIVQ CA

system, the followingsimulations were performed. First, the
NLIVQ CA system was designed for a noise variance of 400
at 2 bpp. Then, this system was used on the test image cor-
rupted by noise of variances 200, 400, and 800 (correspond-
ing to SNRs of 20.01 dB, 17.02 dB, and 13.98 dB), respec-
tively. The results are shown in Table 2.

Next, an NLIVQ CA system was designed for each of the
above noise variances, and used on the test image corrupted
by noise with the same variance. These results are given in
Table 3. To quantify the loss in not using an appropriately
designed system, we compare the results in Tables 2 and 3.
It can be seen that for a noise variance of 200, only a 0.33 dB
loss is incurred, while for a noise variance of 800, this loss is
as little as 0.07 dB. This indicates that the system is robust
and is capable of handling different noise variances than it
was designed for.

Table 1: SNR(dB) of decompressed images at different
rates(bits/pixel). SNR of noisy image = 17.02 dB.

R VQ noisy VQ clean NLIVQ NA NLIVQ CA

2.0 17.02 18.37 19.01 19.45
1.0 16.70 18.22 17.43 18.30

Table 2: SNR(dB) at 2 bits/pixel from a system designed for
a noise variance of 400 but tested on noise variances of 200,
400, and 800, respectively.

Noise variance Noisy image NLIVQ CA image
200 20.01 20.65
400 17.02 19.45
800 13.98 17.83

Table 3: SNR(dB) at 2 bits/pixel from a system designed for
and tested on noise variances of 200, 400, and 800, respec-
tively.

Noise variance Noisy image NLIVQ CA image
200 20.01 20.98
400 17.02 19.45
800 13.98 17.90
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