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2-leved dyadic decompositions. Of the transforms considered in this work, al but the (2,2) and S
transforms performed similarly. The (2,2) and S transforms are low order transforms and were not
able to decorrelate the images as effectively as other higher order transforms. There was no single
transform that performed best over theentiredataset. Thisisconsistent withthe2-D resultsobtained
in[13].

Table 1: Comparison of different methodson CT and MR data (in bits/pixel averaged over theentire

image volume).
| FileName | VolumeSize | UNIX Compress | LOCO-I[2] | CALIC[3] | 3-DEZW | 3-D CB-EZW |

CT_skull 256 x 256 x 192 41357 2.8460 2.7250 23571 2.2005
CT_wrist 256 x 256 x 176 2.7204 1.6531 1.6912 1.3947 1.2723

CT _carotid 256 x 256 x 64 2.7822 1.7388 1.6547 1.6017 15279
CT_Aperts 256 x 256 x 96 1.7399 1.0637 1.0470 1.0600 0.9879
MR_liver_tl 256 x 256 x 48 5.304 3.1582 3.0474 25451 2.3983
MR_liver_t2el | 256 x 256 x 48 3.9384 2.3692 2.2432 1.9446 1.8220
MR_sag_head 256 x 256 x 16 3.5957 2.5567 2.5851 2.3224 2.2279
MR_ped_chest | 256 x 256 x 64 4.3338 2.9282 2.8102 21764 2.0225

Table 2: Comparison of different integer wavel et transforms on CT data (in bits/pixel averaged over

the entire image volume).
[ FileName [ 22 [ (42 [ @4 | 62 [(222 [ S | S+P ]

CT_skull 2.9519 [ 22210 | 2.2005 | 2.2773 | 2.2942 | 2.7976 | 2.2046

CT_wrist 1.8236 | 1.3057 | 1.2723 | 1.3391 | 1.3448 | 1.6756 | 1.3274

CT_carotid | 2.1408 | 15136 | 1.5279 | 15491 | 1.5289 | 1.8524 | 1.4553
CT Aperts | 14263 | 1.0416 | 0.9879 | 1.0776 | 0.9717 | 1.1826 | 1.0139
MRiver t1 | 3.2270 | 2.4262 | 2.3983 | 2.4687 | 2.4707 | 3.1384 | 2.4156
MR iver t2el | 25771 | 1.7607 | 1.8220 | 1.7704 | 1.8810 | 2.3701 | 1.7530
MR_saghead | 2.8631 | 2.4254 | 2.2279 | 2.4547 | 21955 | 2.7353 | 2.3569
MR_ped_chest | 2.4954 | 2.1489 | 2.0225 | 2.1960 | 2.0586 | 2.4927 | 2.1174

5.2. Progressive Performance

Asdiscussed earlier, the proposed algorithm produces an embedded bitstream, enabling progressive
decoding. In this section, we present the progressive performance of our algorithm. No attempt has
been made to optimizethe techniquefor progressivetransmission. Thisisatopicfor futureresearch.

Figure 4 showsthe progressive performance of the 3-D CB-EZW a gorithm at an average rate of
0.1 bits/pixel. For reference, the results using the 2-D Set Partitioningin Hierarchial Trees (SPIHT)
algorithm [27] areincluded. Asbefore, thisapplication of SPIHT does not exploit the dependencies
in the third dimension.

These results show that the proposed al gorithm offers excellent lossy performance, even at low
bit rates. The average PSNR for the 3-D CB-EZW isroughly 5 dB and 4 dB better than that of 2-D
SPIHT at 0.1 and 0.5 bits/pixel, respectively. It should also be noted that the progressive perfor-
mance of the 3-D CB-EZW declines sharply at the boundaries of the 16 slice coding unit. Similar
observations were aso made in [28]. Improving the progressive performance at these coding unit
edges remains atopic of future research.

Figure 5 shows slice number 79 of the CT_skull data set, together with reconstructed images at
0.1 hits/pixel using 2-D SPIHT and 3-D CB-EZW, respectively.
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P(z|C), whichhasto beestimated onthefly through past observations. A better estimateof P(z|C')
yields abetter coding performance. Since the amount of data necessary to reliably estimate P(z|C')
increases with increasing model order, higher-order modeling contexts can result in many symbols
being coded using inaccurate probability estimates. This problem isknown as context dilution [25].
Context dilutionis especialy important in cases where the sourceis not stationary. Here, rapid adap-
tation of the modeling context histograms is essential. Furthermore, the memory requirements to
store this model at both the encoder and the decoder grow exponentially with respect to the order.
Computational requirements also increase with increasing model order, since higher order models
reguire more computations to compute the index to the probability table corresponding to the cur-
rent context.

For context-based adaptive arithmetic coding of EZW symboals, the context models can be de-
signed to take advantage of the spatial and hierarchical dependencies, aswell as dependenciesacross
subbands at the same level of the transform. The wavelet coefficients around the current coefficient
can be used to exploit the spatia dependencies, and the parent coefficient can be used to exploit the
hierarchial dependencies. Similarly, the dependencies across subbands at the same level can be ex-
ploited using the coefficients at the same spatial location in the image. Any combination of these
coefficients can be used to create the current context. However, it isimportant to preserve causality
in context models, since the decoder needs to be able to reproduce the context at every symbol to

decode. 5. RESULTS

We have performed coding experiments on several 8-bit CT and MR image volumes obtained from
Mallinckrodt Institute of Radiology |mage Processing Laboratory [26]. Table 5.1 illustratestheloss-
less performance of the algorithm presented here together with two other algorithmsfound in the lit-
erature. Both LOCO-I [2] and CALIC [3] are state-of-the-art 2-D lossless compression agorithms
and areincluded inthe tablefor reference. Theresultsfor these al gorithms were obtained by encod-
ing every dice independently and averaging the bit rate over the entire image volume. Thisis not
an entirely fair comparison as LOCO-I and CALIC make no attempt to exploit dependenciesin the
third dimension.

The EZW and context-based EZW (CB-EZW) are the 3-D techniques presented in this paper.
The 3-D EZW dgorithm does not have context modeling, and the adaptive arithmetic coder isreset
at every subband. The 3-D CB-EZW agorithm uses context modeling as described in the previous
section. We use the three causal 4-connected symbols around the symbol to be encoded, as well as
the parent symbol. For the purpose of forming the context, the 4-connected symbols are allowed to
beoneof POS, NEG, IZ, or ZTR, where asthe parent isidentified only as significant, or insignificant.
Thisschemeresultsin 2 x 43 = 128 contexts.

Theresultsin Table 5.1 were obtained using a 2-level dyadicimplementation of the (2,4) integer
wavelet transform on consecutive volumes of 16 slices. The same transform was used in all three
directions. The bitrate is averaged over the entire image volume. It should also be noted that all of
the results given in this paper are computed from actua file sizes, not entropies. The results show
that the exploitation of dependenciesinthethird dimension significantly improvesperformance. The
compressed filesfor 3-D CB-EZW areon average 14% and 20% smaller for the CT and MR datasets,
respectively, compared to the smallest file from the two 2-D techniques. It can also be seen that the
utilization of contexts provides additional gain in coding performance. Thefiles for 3-D CB-EZW
are on average 7% and 6% smaller than thefilesfor 3-D EZW for CT and MR data sets, respectively.

5.1. Performance Using Different Integer Wavelet Transfor mations

In this section, we present the performance of our algorithm using different integer wavelet trans-
forms. The results presented in Table 5.1 were obtained using the 3-D CB-EZW a gorithm, and use



In adyadic wavel et transform, every coefficient is related to a set of coefficients at the next finer
level that correspond to the same spatial locationintheimage. A coefficient at acoarselevel iscalled
aparent, whileits spatialy related coefficients at the next finer level are referred to as its children.
Thisdependency can be represented using atree structure. Noticethat for 2-D datacoefficientsinthe
lowpasshand at the coarsest scal e have only three children, where all the other coefficients, except for
the coefficients at the finest scale, havefour. The coefficients at thefinest scale are childless. All the
coefficients at finer levelsthat descend from a coefficient at a coarse level are called its descendants.

Embedded Coding of Zerotrees of Wavel et Coefficients (EZW), whichwasintroduced by Shapiro
in[14], isbased on the observationthat if acoefficient issmall in magnitudewith respect to athresh-
old, then all of itsdescendantsarelikely to be small aswell. EZW suggestsan efficient way of order-
ing the bits of the wavelet coefficients for transmission. The reader isreferred to [14] for adetailed
explanation and a simple example of the EZW algorithm.

Theextension of themethod of [14] to athree-dimensional wavel et transformisstraight forward.
The parent-childrenrelations are considered in three dimensions, instead of two. Figure 3illustrates
suchatree structure. Notethat theroot node of thetreehasonly seven children, whileall other nodes,
except the leaves, have eight. In other words, except for the root node, and the leaves, a coefficient
a (z,y, z) hasthe coefficients at

(22,2y,22), (22 + 1,2y, 22), (22, 2y + 1,22), (22, 2y, 22+ 1), (22 + 1,2y + 1, 22),
(2¢ +1,2y,224+ 1), (22,2y+ 1,22+ 1), 2z + 1,2y + 1,22 + 1) (30)

asitschildren. Todefinetheparent-children relationshipfor acoefficient at theroot node, let L., L, L.
be the dimensions of the root subband. Then, a coefficient of the root subband at (z, y, =) has the
coefficients at

($ + Lx7y72)7($7y+ Ly72)7($,@/,2‘|‘ Lz)v(x + Lx7y+ Lyvz)v
($ + ng,@/72‘|‘ Lz)v(xvy-l' Lyvz‘l' Lz)v(x + Lx7y+ Lyvz‘l' LZ) (31)

asitschildren. Clearly, the leaf nodes do not have any children.
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Figure 3: Three-dimensional tree structure.

4.1. Context-Based Three-Dimensional Zerotree Coding

Severa improvements to two-dimensional EZW have been suggested recently [20, 21, 22, 23]. In
thiswork, we improve the performance of three-dimensional EZW by using context-based adaptive
arithmetic coding, which exploits dependencies between symbols.

The fundamental problem in context-based adaptive arithmetic coder design is to select good
modeling contexts. Let = be the symbol wewant to encode. A simple memoryless model isnot usu-
aly efficient, and would require — log,( P(z)) bitsto encode this symbol. A better choiceisto use
ahigh-order model. We create a modeling context, C' = {xy, 29, -+ , 2}, Where z;; are symbols
for other coefficients that depend on the current symbol. Then, — log,(P(z|C')) bits are needed to
encode z. Notethat if each z; has B bits of resolution, then there are 25X different contexts.

In theory, the higher the order of the modeling context, the lower the conditional entropy [24].
However in practice, increasing the order of the modeling context does not alwaysimprove the cod-
ing performance. The arithmetic coder requires an estimate of the statistical model of the source,



We also consider two other integer wavel et transforms in the literature:
e The Stransform, (1,1):

dn] = z[2n 4+ 1] — 2[2n] (22)
s[n] = x[2n] + L%d[n]j (23)
e An S+Ptransform[11], (4,2):
dn] = z[2n + 1] — z[2n] (24)
My
o] = 2] + |55 (25)

dn] = dOl] + |2 (sln — 1] = [nl) + 2 (sl] = sl + 1) + 2dVfn+ 1] 4 7).

4. ZEROTREE CODING

Progressivetransmissionisahighly desirablefeature for many image compression applications. For
progressive transmission, the information in the bitstream is arranged in order of importance. More
important information appears at the beginning of the bitstream, while less important information
appears towardsthe end. A coarse version of the image can therefore be recovered by decoding the
initial portion of the bitstream, and the image can be refined by continuing the decoding process,
until perfect reconstruction is achieved.

If mean-squared error (MSE) is selected as the distortion measure, information that provides
greater decrease in MSE is considered more important. Let I be the original image, and T, an or-
thonormal transform. Then the transform coefficients C are given by

C=TIL (27
Let € denote the approximation of C produced at the decoder. Then, the reconstructed image I is
given by

(26)

I=11C. (28)
The MSE between the origina and reconstructed imagesis given by

B e | TR
MSE = GIT-1 = L0~ O = $ T ICmm = Cimm)l (29

where N is the number of pixelsin the image, and C'(m,n) denotes the transform coefficient at
wavelet coordinate (m, n). Equation (29) follows from the fact that orthonormal transforms pre-
serve the L, norm.

If the decoder initialy sets al of the coefficients to zero and updates them progressively, it fol-
lowsfrom Equation (29) that the coefficient with the largest magnitude needsto be transmitted first,
sinceit would providethelargest reductionin MSE. Thisapproach could be further improved by the
following observation: If the coefficients are represented in binary notation, the bitsthat are ‘ 1's at
higher bit planes provide greater reductionin MSE than the‘ 1’ bitsat lower bit planes, when trans-
mitted. This observation suggeststhat we should transmit the ‘1’ bits at the highest bit plane first,
rather than transmitting al the bits of the coefficient with the largest magnitude. It should also be
noted that when the decoder receives these bits, it should be able to |ocate the coefficients that each
bit belongsto. Thussome additional informati on needsto be transmitted to denotethe order in which
these bits were transmitted.

For non-orthonormal transforms, the MSE in I can often be computed as a weighted MSE in
C [19], i.e., by weighting each term of the sum in (29). Although the transforms used in this work
are non-orthonormal, thisweighting is not used here. Thisisatopic of on-going research.



and
O] = D[] — (X 1O — K] + 3] ®
k

respectively. Theinverseis obtained by reversing the lifting, and the dual lifting steps, and flipping
signs,

. . . . 1

(=D = 50 D [E1dO [ — e

st [n] = s [n]H(Zk:u []d[n = k]) + 5 (9)
and

D] = dOfa) + (5 PO 1)+ 3. (10
k

It should be noted that although integers are transformed to integers, the coefficients p()[k] and
u)[k] are not necessarily integers. Thus, computing theinteger transform coefficientsrequiresfloat-
ing point operations.

In thiswork we use the following integer wavel et transforms of [13] with the notation (V, N )
where N and N represent the number of vanishing moments of the analysis and synthesishigh pass
filters, respectively:

o A (2,2) transform: .

dln] = z[2n + 1] — L%(w[?n] +z2n+2])+ =] (11)

[\

sla] = af2n] + |3 (dln — 1]+ dln)) + 3. (12)

o A (4,2) transform:
din] = 220 + 1] — |—=(2[2n] + 2[2n + 2)) — —(2[2n — 2] + 2[2n + 4]) + %J (13)

16 16
sla] = af2n] + |3 (dln — 1]+ dln)) + 3. (14)
o A (2,4) transform:
d[n] = 20+ 1] L%(w[?n]—l—x[?n—l—?])—l— %J (15)
) = al2a] + |2 (dln = 1) 4 din]) = (i =2+ dlnt )+ 51 (@19)

e A (6,2) transform:
75

dln] = z[2n+ 1] — L@(w[Qn] +z2n +2]) — %(w[Qn — 2]+ z[2n + 4]) @an

+=2 (220 — 4] + 2[2n + 6]) + %J

256
sli) = el2n] + |5 (dln — 1]+ d[a) ~ 3. (18)
o A (2+2,2) transform:
A = 2[2n + 1] - L%(w[?n] +elnt2])+ %J (19)
sl] = af2n] + |3 (@Vn — 114 dO]) + 3 (20)
dn] = dOfn] — |5 (=sln — 114 s[n] = sl + 1] = [+ 2) + 5. (21)



wavelet transform. They showed that any discrete wavel et transform can be computed using this
scheme and almost all these transforms have reduced computational complexity compared to the
standard filtering algorithm. In thisscheme, atrivia wavelet transform, called thelazy transform, is
computedfirst. Thistransform simply splitstheinputintotwo by gathering the even and odd indexed
samplesin separate arrays. Let 2:[n] betheinput signal. Then thelazy wavel et transformisgiven by

sOn] = 2[2n) (1)
and
dOn] = z[2n + 1]. )
Next, aternating “dual lifting” and ‘lifting” stepsare applied to obtain
d9[n] = d"[n Zp U[n — k] €)
sO[n] = s n] = > u[k]dD[n — k). (4)

: . k
where the coefficients p(*) [k] and «(?) [k] are computed using alifting factorization of the polyphase
matrix. The reader isreferred to [17] for details. Figure 2 illustrates this process using M pairs of
dual lifting and lifting steps.
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Figure 2: The forward wavel et transform using lifting.

Finally, the samples s(*)[1] become the low pass coefficients s[x], while the samples d(M)[n]
become the high pass coefficients d[»] when scaled with a factor K,

) = 200 ©
and K
d[n] = Kd™[n]. (6)

For the transforms considered in thiswork, K = 1.
For the inverse transform, the operations of the forward transform are reversed.

3. INTEGER WAVELET TRANSFORMS

In most cases, the wavel et transform produces floating point coefficients, and although this allows
perfect reconstruction of the original image in theory, the use of finite-precision arithmetic, together
with quantization, resultsin alossy scheme.

Recently, new wavel etsthat transform integersto integers have been introduced [ 10, 11, 12, 13].
In [13], it was shown that an integer version of every wavelet transform with finite filters can be
obtained using the lifting scheme of [18].

Integer wavelet transforms, i.e., wavelet transforms that transform integers to integers, can be
developed using the lifting scheme by rounding off the result of each dual lifting and lifting step
before adding or subtracting. In particular, the dua lifting and lifting steps are replaced by

1

dn) = dDn Zp =)+ 5 (7)



anatomically. A better approach is to consider the whole set of slices as a three-dimensional vol-
ume. In the literature, several methods that utilize dependenciesin al three dimensions have been
proposed[4, 5, 6, 7, 8, 9]. Some of these methods[4, 5, 7, 8] usethree-dimensional discrete wavelet
transforms in lossy schemes, while others[6, 9] use predictive coding to achieve |ossless compres-
sion.

In thiswork, weintroduce alossl ess three-dimensional wavelet compression algorithm that ex-
ploits the dependencies in all three dimensions of volumetric medical images. We decompose the
image data into subbands using a three-dimensional integer wavelet transform [10, 11, 12, 13]. We
then useageneralization of thethe zerotree coding scheme of [ 14] together with context-based adap-
tive arithmetic coding to encode the subband coefficients. The algorithm produces an embedded
bitstream, and thus allows progressive reconstruction of images. In other words, it ispossibleto re-
construct alossy version of the image volume, by decoding theinitia portion of the bitstream. The
quality of theimage volume can be improved by further decoding of the bitstream, until the images
are perfectly reconstructed.

Results for a set of CT and MR images are presented using different wavelet transforms. We
alsoinvestigatethelossless performance of the algorithm aswell asits progressive performance and
compare with other compression techniques.

2. WAVELET TRANSFORMS

The wavelet transform is a valuabl e tool for multiresolution analysis and has been widely used in
image compression applications[15, 16]. In transform coding of images, theimageisprojected onto
aset of basisfunctionsand the resulting transform coefficients are encoded. Efficient coding requires
that the transform compact the energy in a small number of coefficients and have good localization
in both the space and spatial-frequency domains.

Thewavelet transform can be implemented using perfect reconstruction FIR filter banksand ex-
tended to multi-dimensionsusing seperabl efilters[15, 16]. Each dimensionisfiltered and downsam-
pled separately. Figure 1 illustratesthe implementation of two levels of athree-dimensional dyadic
decomposition.
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Figure 1: Three-dimensiona Wavelet Analysis.
In[17], Daubechies and Sweldens present a scheme, called lifting, for computing the discrete
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ABSTRACT
A novel losslessmedical image compression al gorithm based on three-dimensional integer wavel et transforms

and zerotree coding ispresented. The EZW a gorithmisextended to three dimensionsand context-based adap-
tive arithmetic coding is used to improveits performance. The agorithm (3-D CB-EZW) efficiently encodes
image volumes by exploitingthe dependenciesin al three dimensions, whileenabling lossy and |oss ess com-
pression from the same bitstream. Results on lossless compression of CT and MR images are presented, and
compared to other lossless compression algorithms. The progressive performance of the 3-D CB-EZW al-
gorithm is also compared to other lossy progressive coding algorithms. For representative images, the 3-D
CB-EZW dgorithm produced an average of 14% and 20% decrease in compressed file sizes for CT and MR
images, respectively, compared to the best available 2-D |ossless compression techniques.

1. INTRODUCTION

Anincreasing number of medical radiology images are created directly in digital form. Clinical pic-
ture archiving and communication systems (PACS), and telemedicine networks require the storage
and transmission of alarge amount of medical image data, and efficient compression of thesedataare
crucial. Severa techniquesfor their compression have been proposed [1]. These can be classified
intolosslessand lossy techniques. L osslesstechniquesallow exact reconstruction of theoriginal im-
age, whilethelossy techniquesaim to achieve high compression ratios by allowing some acceptable
degradation in the image.

Although lossy compression is gaining acceptance, |0ssless compression has been widely pref-
ered by medical professionalsfor severa reasons[1]. Since lossless compression does not degrade
theimage, it facilitates accurate diagnosis. Many physiciansfear that lossy compression techniques
might lead to errorsin diagnosis, sincein some cases they can introduce unknown artifacts, although
in most cases they achieve excdlent visual quality. Furthermore, there exists several legal and reg-
ulatory issuesthat favor lossless compression.

Severd of today’ sdiagnosticimaging techniques, such as computed tomography (CT), magnetic
resonance (MR), positron emission tomography (PET), and single photon emission computed to-
mography (SPECT), produce a three-dimensiona volume of the object being imaged, represented
as multipletwo-dimensional slices. Theseimages can be coded independently on aslice by slice ba-
sis. Thereexist severa 2-D losslesscompression algorithms, such asthe LOw COmplexity L Ossless
COmpression of Images (LOCO-I) agorithm [2] and the Context-based, Adaptive, LosslessImage
Codec (CALIC) agorithm[3], that produce excellent results. However, such two-dimensiona meth-
ods do not benefit from exploiting the dependencies that exist among all three dimensions. Since
the image dlices are cross sections that are parallel and adjacent to one another, they are correlated
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