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2-level dyadic decompositions. Of the transforms considered in this work, all but the (2,2) and S
transforms performed similarly. The (2,2) and S transforms are low order transforms and were not
able to decorrelate the images as effectively as other higher order transforms. There was no single
transform that performed best over the entire data set. This is consistent with the 2-D results obtained
in [13].

Table 1: Comparison of different methods on CT and MR data (in bits/pixel averaged over the entire
image volume).

FileName Volume Size UNIX Compress LOCO-I [2] CALIC [3] 3-D EZW 3-D CB-EZW

CT skull 256 x 256 x 192 4.1357 2.8460 2.7250 2.3571 2.2005
CT wrist 256 x 256 x 176 2.7204 1.6531 1.6912 1.3947 1.2723

CT carotid 256 x 256 x 64 2.7822 1.7388 1.6547 1.6017 1.5279
CT Aperts 256 x 256 x 96 1.7399 1.0637 1.0470 1.0600 0.9879

MR liver t1 256 x 256 x 48 5.304 3.1582 3.0474 2.5451 2.3983
MR liver t2e1 256 x 256 x 48 3.9384 2.3692 2.2432 1.9446 1.8220
MR sag head 256 x 256 x 16 3.5957 2.5567 2.5851 2.3224 2.2279
MR ped chest 256 x 256 x 64 4.3338 2.9282 2.8102 2.1764 2.0225

Table 2: Comparison of different integer wavelet transforms on CT data (in bits/pixel averaged over
the entire image volume).

FileName (2,2) (4,2) (2,4) (6,2) (2+2,2) S S+P

CT skull 2.9519 2.2210 2.2005 2.2773 2.2942 2.7976 2.2046
CT wrist 1.8236 1.3057 1.2723 1.3391 1.3448 1.6756 1.3274

CT carotid 2.1408 1.5136 1.5279 1.5491 1.5289 1.8524 1.4553
CT Aperts 1.4263 1.0416 0.9879 1.0776 0.9717 1.1826 1.0139

MR liver t1 3.2270 2.4262 2.3983 2.4687 2.4707 3.1384 2.4156
MR liver t2e1 2.5771 1.7607 1.8220 1.7704 1.8810 2.3701 1.7530
MR sag head 2.8631 2.4254 2.2279 2.4547 2.1955 2.7353 2.3569
MR ped chest 2.4954 2.1489 2.0225 2.1960 2.0586 2.4927 2.1174

5.2. Progressive Performance

As discussed earlier, the proposed algorithm produces an embedded bitstream, enabling progressive
decoding. In this section, we present the progressive performance of our algorithm. No attempt has
been made to optimize the technique for progressive transmission. This is a topic for future research.

Figure 4 shows the progressive performance of the 3-D CB-EZW algorithm at an average rate of
0.1 bits/pixel. For reference, the results using the 2-D Set Partitioning in Hierarchial Trees (SPIHT)
algorithm [27] are included. As before, this application of SPIHT does not exploit the dependencies
in the third dimension.

These results show that the proposed algorithm offers excellent lossy performance, even at low
bit rates. The average PSNR for the 3-D CB-EZW is roughly 5 dB and 4 dB better than that of 2-D
SPIHT at 0.1 and 0.5 bits/pixel, respectively. It should also be noted that the progressive perfor-
mance of the 3-D CB-EZW declines sharply at the boundaries of the 16 slice coding unit. Similar
observations were also made in [28]. Improving the progressive performance at these coding unit
edges remains a topic of future research.

Figure 5 shows slice number 79 of the CT skull data set, together with reconstructed images at
0.1 bits/pixel using 2-D SPIHT and 3-D CB-EZW, respectively.
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P (xjC), which has to be estimated on the fly through past observations. A better estimate of P (xjC)
yields a better coding performance. Since the amount of data necessary to reliably estimate P (xjC)
increases with increasing model order, higher-order modeling contexts can result in many symbols
being coded using inaccurate probability estimates. This problem is known as context dilution [25].
Context dilution is especially important in cases where the source is not stationary. Here, rapid adap-
tation of the modeling context histograms is essential. Furthermore, the memory requirements to
store this model at both the encoder and the decoder grow exponentially with respect to the order.
Computational requirements also increase with increasing model order, since higher order models
require more computations to compute the index to the probability table corresponding to the cur-
rent context.

For context-based adaptive arithmetic coding of EZW symbols, the context models can be de-
signed to take advantage of the spatial and hierarchical dependencies, as well as dependencies across
subbands at the same level of the transform. The wavelet coefficients around the current coefficient
can be used to exploit the spatial dependencies, and the parent coefficient can be used to exploit the
hierarchial dependencies. Similarly, the dependencies across subbands at the same level can be ex-
ploited using the coefficients at the same spatial location in the image. Any combination of these
coefficients can be used to create the current context. However, it is important to preserve causality
in context models, since the decoder needs to be able to reproduce the context at every symbol to
decode.

5. RESULTS

We have performed coding experiments on several 8-bit CT and MR image volumes obtained from
Mallinckrodt Institute of Radiology Image Processing Laboratory [26]. Table 5.1 illustrates the loss-
less performance of the algorithm presented here together with two other algorithms found in the lit-
erature. Both LOCO-I [2] and CALIC [3] are state-of-the-art 2-D lossless compression algorithms
and are included in the table for reference. The results for these algorithms were obtained by encod-
ing every slice independently and averaging the bit rate over the entire image volume. This is not
an entirely fair comparison as LOCO-I and CALIC make no attempt to exploit dependencies in the
third dimension.

The EZW and context-based EZW (CB-EZW) are the 3-D techniques presented in this paper.
The 3-D EZW algorithm does not have context modeling, and the adaptive arithmetic coder is reset
at every subband. The 3-D CB-EZW algorithm uses context modeling as described in the previous
section. We use the three causal 4-connected symbols around the symbol to be encoded, as well as
the parent symbol. For the purpose of forming the context, the 4-connected symbols are allowed to
be one of POS, NEG, IZ, or ZTR, where as the parent is identified only as significant, or insignificant.
This scheme results in 2� 43 = 128 contexts.

The results in Table 5.1 were obtained using a 2-level dyadic implementation of the (2,4) integer
wavelet transform on consecutive volumes of 16 slices. The same transform was used in all three
directions. The bitrate is averaged over the entire image volume. It should also be noted that all of
the results given in this paper are computed from actual file sizes, not entropies. The results show
that the exploitation of dependencies in the third dimension significantly improves performance. The
compressed files for 3-D CB-EZW are on average 14% and 20% smaller for the CT and MR data sets,
respectively, compared to the smallest file from the two 2-D techniques. It can also be seen that the
utilization of contexts provides additional gain in coding performance. The files for 3-D CB-EZW
are on average 7% and 6% smaller than the files for 3-D EZW for CT and MR data sets, respectively.

5.1. Performance Using Different Integer Wavelet Transformations

In this section, we present the performance of our algorithm using different integer wavelet trans-
forms. The results presented in Table 5.1 were obtained using the 3-D CB-EZW algorithm, and use



In a dyadic wavelet transform, every coefficient is related to a set of coefficients at the next finer
level that correspond to the same spatial location in the image. A coefficient at a coarse level is called
a parent, while its spatially related coefficients at the next finer level are referred to as its children.
This dependency can be represented using a tree structure. Notice that for 2-D data coefficients in the
lowpass band at the coarsest scale have only three children, where all the other coefficients, except for
the coefficients at the finest scale, have four. The coefficients at the finest scale are childless. All the
coefficients at finer levels that descend from a coefficient at a coarse level are called its descendants.

Embedded Coding of Zerotrees of Wavelet Coefficients (EZW), which was introduced by Shapiro
in [14], is based on the observation that if a coefficient is small in magnitude with respect to a thresh-
old, then all of its descendants are likely to be small as well. EZW suggests an efficient way of order-
ing the bits of the wavelet coefficients for transmission. The reader is referred to [14] for a detailed
explanation and a simple example of the EZW algorithm.

The extension of the method of [14] to a three-dimensional wavelet transform is straight forward.
The parent-children relations are considered in three dimensions, instead of two. Figure 3 illustrates
such a tree structure. Note that the root node of the tree has only seven children, while all other nodes,
except the leaves, have eight. In other words, except for the root node, and the leaves, a coefficient
at (x; y; z) has the coefficients at

(2x; 2y; 2z); (2x+ 1; 2y; 2z); (2x; 2y+ 1; 2z); (2x; 2y; 2z+ 1); (2x+ 1; 2y + 1; 2z);
(2x+ 1; 2y; 2z+ 1); (2x; 2y+ 1; 2z + 1); (2x+ 1; 2y+ 1; 2z + 1) (30)

as its children. To define the parent-children relationshipfor a coefficient at the root node, letLx; Ly; Lz
be the dimensions of the root subband. Then, a coefficient of the root subband at (x; y; z) has the
coefficients at

(x+ Lx; y; z); (x; y+ Ly ; z); (x; y; z+ Lz); (x+ Lx; y + Ly ; z);
(x+ Lx; y; z+ Lz); (x; y+ Ly; z + Lz); (x+ Lx; y + Ly; z + Lz) (31)

as its children. Clearly, the leaf nodes do not have any children.

Figure 3: Three-dimensional tree structure.

4.1. Context-Based Three-Dimensional Zerotree Coding

Several improvements to two-dimensional EZW have been suggested recently [20, 21, 22, 23]. In
this work, we improve the performance of three-dimensional EZW by using context-based adaptive
arithmetic coding, which exploits dependencies between symbols.

The fundamental problem in context-based adaptive arithmetic coder design is to select good
modeling contexts. Let x be the symbol we want to encode. A simple memoryless model is not usu-
ally efficient, and would require � log2(P (x)) bits to encode this symbol. A better choice is to use
a high-order model. We create a modeling context, C = fx1; x2; � � � ; xKg, where xi are symbols
for other coefficients that depend on the current symbol. Then, � log2(P (xjC)) bits are needed to
encode x. Note that if each xi has B bits of resolution, then there are 2BK different contexts.

In theory, the higher the order of the modeling context, the lower the conditional entropy [24].
However in practice, increasing the order of the modeling context does not always improve the cod-
ing performance. The arithmetic coder requires an estimate of the statistical model of the source,



We also consider two other integer wavelet transforms in the literature:
� The S transform, (1,1):

d[n] = x[2n+ 1]� x[2n] (22)

s[n] = x[2n] + b
1

2
d[n]c: (23)

� An S+P transform [11], (4,2):
d(1)[n] = x[2n+ 1]� x[2n] (24)

s[n] = x[2n] + b
d(1)[n]

2
c (25)

d[n] = d(1)[n] + b
2

8
(s[n� 1]� s[n]) +

3

8
(s[n]� s[n+ 1]) +

2

8
d(1)[n+ 1] +

1

2
c:

(26)
4. ZEROTREE CODING

Progressive transmission is a highly desirable feature for many image compression applications. For
progressive transmission, the information in the bitstream is arranged in order of importance. More
important information appears at the beginning of the bitstream, while less important information
appears towards the end. A coarse version of the image can therefore be recovered by decoding the
initial portion of the bitstream, and the image can be refined by continuing the decoding process,
until perfect reconstruction is achieved.

If mean-squared error (MSE) is selected as the distortion measure, information that provides
greater decrease in MSE is considered more important. Let I be the original image, and T, an or-
thonormal transform. Then the transform coefficients C are given by

C = TI: (27)
Let Ĉ denote the approximation of C produced at the decoder. Then, the reconstructed image Î is
given by

Î = T
�1
Ĉ: (28)

The MSE between the original and reconstructed images is given by

MSE =
1

N
kI� Îk2 =

1

N
kC� Ĉk2 =

1

N

X

m

X

n

jC(m;n)� Ĉ(m;n)j2 (29)

where N is the number of pixels in the image, and C(m;n) denotes the transform coefficient at
wavelet coordinate (m;n). Equation (29) follows from the fact that orthonormal transforms pre-
serve the L2 norm.

If the decoder initially sets all of the coefficients to zero and updates them progressively, it fol-
lows from Equation (29) that the coefficient with the largest magnitude needs to be transmitted first,
since it would provide the largest reduction in MSE. This approach could be further improved by the
following observation: If the coefficients are represented in binary notation, the bits that are ‘1’s at
higher bit planes provide greater reduction in MSE than the ‘1’ bits at lower bit planes, when trans-
mitted. This observation suggests that we should transmit the ‘1’ bits at the highest bit plane first,
rather than transmitting all the bits of the coefficient with the largest magnitude. It should also be
noted that when the decoder receives these bits, it should be able to locate the coefficients that each
bit belongs to. Thus some additional information needs to be transmitted to denote the order in which
these bits were transmitted.

For non-orthonormal transforms, the MSE in Î can often be computed as a weighted MSE in
Ĉ [19], i.e., by weighting each term of the sum in (29). Although the transforms used in this work
are non-orthonormal, this weighting is not used here. This is a topic of on-going research.



and

s(i)[n] = s(i�1)[n]� b(
X

k

u(i)[k]d(i)[n� k]) +
1

2
c (8)

respectively. The inverse is obtained by reversing the lifting, and the dual lifting steps, and flipping
signs,

s(i�1)[n] = s(i)[n] + b(
X

k

u(i)[k]d(i)[n� k]) +
1

2
c (9)

and

d(i�1)[n] = d(i)[n] + b(
X

k

p(i)[k]s(i�1)[n� k]) +
1

2
c: (10)

It should be noted that although integers are transformed to integers, the coefficients p(i)[k] and
u(i)[k] are not necessarily integers. Thus, computing the integer transform coefficients requires float-
ing point operations.

In this work we use the following integer wavelet transforms of [13] with the notation (N; ~N),
whereN and ~N represent the number of vanishing moments of the analysis and synthesis high pass
filters, respectively:

� A (2,2) transform:

d[n] = x[2n+ 1]� b
1

2
(x[2n] + x[2n+ 2]) +

1

2
c (11)

s[n] = x[2n] + b
1

4
(d[n� 1] + d[n]) +

1

2
c: (12)

� A (4,2) transform:

d[n] = x[2n+ 1]� b
9

16
(x[2n] + x[2n+ 2])�

1

16
(x[2n� 2] + x[2n+ 4]) +

1

2
c (13)

s[n] = x[2n] + b
1

4
(d[n� 1] + d[n]) +

1

2
c: (14)

� A (2,4) transform:

d[n] = x[2n+ 1]� b
1

2
(x[2n] + x[2n+ 2]) +

1

2
c (15)

s[n] = x[2n] + b
19

64
(d[n� 1] + d[n])�

3

64
(d[n� 2] + d[n+ 1]) +

1

2
c: (16)

� A (6,2) transform:

d[n] = x[2n+ 1]� b
75

128
(x[2n] + x[2n+ 2])�

25

256
(x[2n� 2] + x[2n+ 4]) (17)

+
3

256
(x[2n� 4] + x[2n+ 6]) +

1

2
c

s[n] = x[2n] + b
1

4
(d[n� 1] + d[n])�

1

2
c: (18)

� A (2+2,2) transform:

d(1)[n] = x[2n+ 1]� b
1

2
(x[2n] + x[2n+ 2]) +

1

2
c (19)

s[n] = x[2n] + b
1

4
(d(1)[n� 1] + d(1)[n]) +

1

2
c (20)

d[n] = d(1)[n]� b
1

16
(�s[n � 1] + s[n]� s[n + 1]� s[n+ 2]) +

1

2
c: (21)



wavelet transform. They showed that any discrete wavelet transform can be computed using this
scheme and almost all these transforms have reduced computational complexity compared to the
standard filtering algorithm. In this scheme, a trivial wavelet transform, called the lazy transform, is
computed first. This transform simply splits the input into two by gathering the even and odd indexed
samples in separate arrays. Let x[n] be the input signal. Then the lazy wavelet transform is given by

s(0)[n] = x[2n] (1)
and

d(0)[n] = x[2n+ 1]: (2)

Next, alternating “dual lifting” and ‘lifting” steps are applied to obtain

d(i)[n] = d(i�1)[n]�
X

k

p(i)[k]s(i�1)[n� k] (3)

and
s(i)[n] = s(i�1)[n]�

X

k

u(i)[k]d(i)[n� k]: (4)

where the coefficients p(i)[k] and u(i)[k] are computed using a lifting factorization of the polyphase
matrix. The reader is referred to [17] for details. Figure 2 illustrates this process using M pairs of
dual lifting and lifting steps.
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Figure 2: The forward wavelet transform using lifting.

Finally, the samples s(M)[n] become the low pass coefficients s[n], while the samples d(M)[n]
become the high pass coefficients d[n] when scaled with a factor K,

s[n] =
s(M)[n]

K
(5)

and
d[n] = Kd(M)[n]: (6)

For the transforms considered in this work, K = 1.
For the inverse transform, the operations of the forward transform are reversed.

3. INTEGER WAVELET TRANSFORMS

In most cases, the wavelet transform produces floating point coefficients, and although this allows
perfect reconstruction of the original image in theory, the use of finite-precision arithmetic, together
with quantization, results in a lossy scheme.

Recently, new wavelets that transform integers to integers have been introduced [10, 11, 12, 13].
In [13], it was shown that an integer version of every wavelet transform with finite filters can be
obtained using the lifting scheme of [18].

Integer wavelet transforms, i.e., wavelet transforms that transform integers to integers, can be
developed using the lifting scheme by rounding off the result of each dual lifting and lifting step
before adding or subtracting. In particular, the dual lifting and lifting steps are replaced by

d(i)[n] = d(i�1)[n]� b(
X

k

p(i)[k]s(i�1)[n� k]) +
1

2
c (7)



anatomically. A better approach is to consider the whole set of slices as a three-dimensional vol-
ume. In the literature, several methods that utilize dependencies in all three dimensions have been
proposed [4, 5, 6, 7, 8, 9]. Some of these methods [4, 5, 7, 8] use three-dimensional discrete wavelet
transforms in lossy schemes, while others [6, 9] use predictive coding to achieve lossless compres-
sion.

In this work, we introduce a lossless three-dimensional wavelet compression algorithm that ex-
ploits the dependencies in all three dimensions of volumetric medical images. We decompose the
image data into subbands using a three-dimensional integer wavelet transform [10, 11, 12, 13]. We
then use a generalization of the the zerotree coding scheme of [14] together with context-based adap-
tive arithmetic coding to encode the subband coefficients. The algorithm produces an embedded
bitstream, and thus allows progressive reconstruction of images. In other words, it is possible to re-
construct a lossy version of the image volume, by decoding the initial portion of the bitstream. The
quality of the image volume can be improved by further decoding of the bitstream, until the images
are perfectly reconstructed.

Results for a set of CT and MR images are presented using different wavelet transforms. We
also investigate the lossless performance of the algorithm as well as its progressive performance and
compare with other compression techniques.

2. WAVELET TRANSFORMS

The wavelet transform is a valuable tool for multiresolution analysis and has been widely used in
image compression applications [15, 16]. In transform coding of images, the image is projected onto
a set of basis functions and the resulting transform coefficients are encoded. Efficient coding requires
that the transform compact the energy in a small number of coefficients and have good localization
in both the space and spatial-frequency domains.

The wavelet transform can be implemented using perfect reconstruction FIR filter banks and ex-
tended to multi-dimensions using seperable filters [15, 16]. Each dimension is filtered and downsam-
pled separately. Figure 1 illustrates the implementation of two levels of a three-dimensional dyadic
decomposition.
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Figure 1: Three-dimensional Wavelet Analysis.
In [17], Daubechies and Sweldens present a scheme, called lifting, for computing the discrete
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ABSTRACT
A novel lossless medical image compression algorithm based on three-dimensional integer wavelet transforms
and zerotree coding is presented. The EZW algorithm is extended to three dimensions and context-based adap-
tive arithmetic coding is used to improve its performance. The algorithm (3-D CB-EZW) efficiently encodes
image volumes by exploiting the dependencies in all three dimensions, while enabling lossy and lossless com-
pression from the same bitstream. Results on lossless compression of CT and MR images are presented, and
compared to other lossless compression algorithms. The progressive performance of the 3-D CB-EZW al-
gorithm is also compared to other lossy progressive coding algorithms. For representative images, the 3-D
CB-EZW algorithm produced an average of 14% and 20% decrease in compressed file sizes for CT and MR
images, respectively, compared to the best available 2-D lossless compression techniques.

1. INTRODUCTION

An increasing number of medical radiology images are created directly in digital form. Clinical pic-
ture archiving and communication systems (PACS), and telemedicine networks require the storage
and transmission of a large amount of medical image data, and efficient compression of these data are
crucial. Several techniques for their compression have been proposed [1]. These can be classified
into lossless and lossy techniques. Lossless techniques allow exact reconstruction of the original im-
age, while the lossy techniques aim to achieve high compression ratios by allowing some acceptable
degradation in the image.

Although lossy compression is gaining acceptance, lossless compression has been widely pref-
ered by medical professionals for several reasons [1]. Since lossless compression does not degrade
the image, it facilitates accurate diagnosis. Many physicians fear that lossy compression techniques
might lead to errors in diagnosis, since in some cases they can introduce unknown artifacts, although
in most cases they achieve excellent visual quality. Furthermore, there exists several legal and reg-
ulatory issues that favor lossless compression.

Several of today’s diagnostic imaging techniques, such as computed tomography (CT), magnetic
resonance (MR), positron emission tomography (PET), and single photon emission computed to-
mography (SPECT), produce a three-dimensional volume of the object being imaged, represented
as multiple two-dimensional slices. These images can be coded independently on a slice by slice ba-
sis. There exist several 2-D lossless compression algorithms, such as the LOw COmplexity LOssless
COmpression of Images (LOCO-I) algorithm [2] and the Context-based, Adaptive, Lossless Image
Codec (CALIC) algorithm [3], that produce excellent results. However, such two-dimensional meth-
ods do not benefit from exploiting the dependencies that exist among all three dimensions. Since
the image slices are cross sections that are parallel and adjacent to one another, they are correlated
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