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ABSTRACT

In this paper, we investigate the error resilience properties of JPEG2000. Through a careful
analysis of the structure of JPEG2000 codestreams, we identify the dependencies among coding
passes of a codeblock. In our analysis, we consider the effects of mode variations provided by
the standard for low-memory, low-complexity implementations. The proposed methods are derived
using the existing dependency structure of coding passes and do not require a substantial increase
in computational capabilities of the decoder. Experimental results indicate that these methods can
improve error resilience performance substantially.

1. INTRODUCTION

With the explosive growth of multimedia applications, the transmission of multimedia products
over lossy communication channels such as the Internet or wireless networks has become an impor-
tant area of research. When compressed images are transmitted over such channels, the compressed
codestreams received at the decoder can contain errors. It is highly desirable that the decoder be
able to reconstruct images using these noisy codestreams.

Many image compression methods rely on efficient entropy coders that are dependent on the
state of the system. Such coders are very sensitive to errors in the codestream. Thus, the operation
of high performance image codecs over lossy communication channels requires careful design to
avoid complete failure when the codestream gets corrupted.

JPEG2000 is the newest international image compression standard [1, 2]. It offers state-of-the-
art compression performance as well as improved functionality over previous compression stan-
dards. In this paper, we analyze the error resilience properties of JPEG2000. The JPEG2000 stan-
dard offers several mechanisms to combat errors in the codestream. Through a careful analysis of
the encoding and decoding procedures, we identify sections of the codestream that can be salvaged
when errors occur. We also explore the effects of external error detection mechanisms on the error
resilience properties of JPEG2000. The JPEG2000 standard offers some mode variations that were
included to enable low-complexity, low-memory implementations. We illustrate how these mode
variations can affect error resilience.

This paper is organized as follows: In the next section, we provide a brief overview of JPEG2000.
In Section 3, error resilience properties of the JPEG2000 standard are analyzed. We provide exper-
imental results in Section 4.

2. OVERVIEW OF JPEG2000

In this section, we provide an overview of the JPEG2000 algorithm. Our goal here is not to provide
a comprehensive overview. We intend to review only those properties and features that are needed
to understand the remainder of the paper. A more balanced review can be found in [3]. For a
comprehensive overview of JPEG2000, the interested reader is referred to [1, 2].

In JPEG2000, the input image is first divided into non-overlapping rectangular tiles. If the
image has multiple components, an optional component transform can be applied to decorrelate the
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components. The samples of each component that fall into a particular tile are referred to as a tile-
component. Each tile-component is then transformed using a wavelet transform and the wavelet
subbands are partitioned into several different geometric structures. These geometric structures are
instrumental in enabling low memory implementations and providing spatial random access. As we
will discuss later, they also contribute to the error resilience of the codestream.

The smallest geometric structure in JPEG2000 is the codeblock. Codeblocks are formed by par-
titioning the wavelet subbands, and the codeblocks of particular resolutions are grouped together to
form precincts. Once the wavelet subbands are quantized, each codeblock is compressed individu-
ally using a bitplane coder. The bitplane coder makes three passes over each bitplane of a codeblock.
These passes are referred to as coding passes. The compressed data from each codeblock can be
regarded as an embedded bitstream. The codestream is then comprised of a different number of
coding passes from each individual codeblock bitstream.

The first pass in a new bitplane is called the significance propagation pass. Let us define ����
as the “significance state” of a sample at location� � ���� ��� during the coding process. ���� is
reset to zero for all samples at the start of the coding process and it is set to one as soon as the first
non-zero magnitude bit of the sample is coded. A bit is coded in the significance propagation pass
if its location is not significant, but at least one of its eight-connected neighbors is significant. If the
bit that is coded is 1, the sign bit of the current sample is coded and ���� is set to 1 immediately.
The scan pattern followed for the coding of bitplanes, within each codeblock (in all subbands), is
shown in Figure 1. This scan pattern is followed in each of the three coding passes.

Figure 1: Scan pattern for bitplane coding.

The bits of each coding pass are arithmetically coded using context models depending on the
coding pass and the subband type. For significance coding, 9 different contexts are used. The
context label ������� is dependent on the significance states of the eight-connected neighbors of the
current bit. ������� then determines the probability estimate that will be used in arithmetic coding.

The second pass is the magnitude refinement pass. In this pass, all bits from locations that
became significant in a previous bitplane are coded. As the name implies, this pass refines the
magnitudes of the samples that became significant in previous bitplanes. The magnitude refinement
context label, �������, is selected based on ������� and the value of the significance state variable
���� delayed by one bitplane, ����.

The third and final pass is the clean-up pass, which takes care of any bits not coded in the first
two passes. By definition, this pass is a “significance” pass, so significance coding, as described
for the significance propagation pass above, is used to code the samples in this pass. Unlike the
significance propagation pass, however, a run coding mode may also occur in this pass. Run coding
occurs when all four locations in a column of the scan (see Figure 1) are insignificant and each has
only insignificant neighbors. A single bit is then coded to indicate whether the column is identically
zero or not. If not, the length of the zero run (0 to 3) is coded, reverting to the “normal” bit-by-bit
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coding for the location immediately following the 1 that terminated the zero run.
For the purposes of forming the codestream, compressed data from each precinct are arranged

to form packets. Packets play an important role in the organization of data within JPEG2000 code-
stream. Each packet contains a header and a body. The packet header contains information about
the contribution of each codeblock in the precinct into the packet, and the body contains coding
passes of codeblocks. Packets that belong to a particular tile are grouped together to form a tile-
stream, and tile-streams are grouped together to form the JPEG2000 codestream. Similar to packets,
tile-streams are comprised of a header and a body. It is possible to break tile-streams into multiple
tile-parts. In this case, the first tile-part contains a tile header and the remaining tile-parts contain
tile-part headers. Tile-parts allow the progression concepts to be extended to the entire image. There
is also a main header at the beginning of the codestream. The structure of a JPEG2000 codestream
is illustrated in Figure 2. The EOC marker denotes the end of the codestream.

Main Header Tile-stream Tile-stream Tile-stream EOC

Tile Header PacketPacket Packet

Packet Header Packet Body

Figure 2: A simple JPEG2000 codestream.

3. ERROR RESILIENCE OF JPEG2000 CODESTREAMS

Entropy coding in JPEG2000 is achieved using a context-based arithmetic bitplane coder. The op-
eration of this coder is highly dependent on the state of the system, and it is crucial to maintain
synchronization between the encoder and the decoder. A single bit error in the arithmetically coded
segments of the bitstream can destroy this synchronization, and could result in erroneous decom-
pression. To combat this problem, several error resilience tools are provided within JPEG2000.

The partitioning of the codestream into different segments is the first line of defense. In terms
of error resilience, this partitioning aims to isolate errors made in one segment to that particular
segment, and prevent error propagation across segment boundaries. This isolation occurs at several
levels, since the codestream is organized in a hierarchical fashion as illustrated in Figure 2.

JPEG2000 provides a mechanism where the packet headers can be extracted from every packet
and stored in tile-part headers or the main header. This is referred to as packed packet headers.
Packed packet headers can provide significant advantages for error resilience if the main and tile-
part headers can be transmitted in an error-free fashion. Since each packet header contains the
lengths in bytes of all coding passes in that packet (when used with the RESTART mode, described
in the next section), the decoder can utilize this information to isolate errors.
3.1. Error Detection and Resynchronization

To complement the hierarchical data partitioning, JPEG2000 provides several mechanisms for error
detection and resynchronization. One such mechanism is the byte-stuffing procedure in JPEG2000.
Through the use of this byte-stuffing procedure, the JPEG2000 arithmetic coder does not produce
certain values (0xFF90 through 0xFFFF) inside coding passes. These values, called delimiting
marker codes, are reserved for codestream markers. Unexpected detection of one of these values
would indicate that an error has occurred.

Some of the error detection and resynchronization mechanisms are enabled by mode variations.
These alternatives to the default mode of the codec allow additional capabilities in exchange for
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some small losses in compression efficiency. Mode variations are controlled by flags that are sig-
naled inside headers. Although some of these modes were not designed with the intent to improve
error resilience, we will discuss how each mode affects error resilience.

When the RESET mode is used, the context states (i.e., the probabilities used in arithmetic
coding) are reset to their initial values at the end of each coding pass. If the RESET switch is not
specified, this initialization occurs only prior to the first coding pass of a codeblock.

The RESTART switch causes the MQ arithmetic coder to be restarted at the beginning of each
coding pass. Thus, when this mode is utilized, every coding pass has its own MQ codeword segment.
It should be noted that the length of each of these segments is signaled in the packet header. If the
RESTART switch is not specified, the arithmetic coder is restarted only at the beginning of each
codeblock.

The goal of the BYPASS mode is to provide reduced complexity at high rates with little loss in
compression efficiency. When this mode is selected, the MQ coder is bypassed during the first (sig-
nificance propagation) and second (magnitude refinement) coding passes (after the first 10 coding
passes of a codeblock), and the binary symbols are stored in raw segments. To avoid the appear-
ance of the delimiting marker codes inside these raw segments, a simple bit-stuffing procedure is
adopted.

It is also possible to use the ERTERM mode. When the ERTERM mode is utilized, the encoder
adopts a predictable termination policy for each MQ and/or raw codeword segment. Then, the
decoder can detect that an error has occurred in an arithmetically coded codeword segment.

The CAUSAL mode was defined by the standard to allow parallel processing of coding passes,
when used in conjunction with RESET and RESTART modes. However, as we will see in the
following sections, it also has implications in error resilience. When the CAUSAL mode is utilized,
the context formation process is modified slightly. Recall that the scan pattern of samples within
a codeblock, as shown in Figure 1, was a 4-sample stripe-oriented scan. In CAUSAL mode, the
samples within a given stripe are encoded without depending on the values of future stripes. Thus,
when the contexts are formed, all samples from future stripes are treated as insignificant.

3.2. Data Recovery

As discussed in Section 2, entropy coding in JPEG2000 is performed independently on each code-
block. Three passes are performed over each bitplane of a codeblock. This is illustrated in Figure 3
�. When a decoder detects an error in a given coding pass, current practice is to discard the current
and all future coding passes of the current codeblock. In this section, we illustrate that this practice
results in suboptimal performance, and more information can be salvaged from the codestream. We
observe that even though there might be errors in earlier coding passes, some (or all) future coding
passes might still be completely or partially decodable, depending on certain modes used during the
creation of the codestream.

We now analyze what parts of the codeblock bitstream can be recovered under different scenar-
ios. It is important to note that external information on the locations of the errors (when available)
can be utilized during decoding. Such information can be gathered from channel codes that are
applied to a JPEG2000 codestream prior to transmission. For packet-switched networks, such as
the internet, this information may be obtained from the transport layer. Of particular interest is the
location of the first error within a coding pass. If this information is available, partial decompression
of current and future coding passes can be enhanced.

We break our analysis into two sections. We first consider the case where no external infor-
mation on the location of errors is available. In this case, error detection is performed using the

�It is important to mention that although the bitstreams for each coding pass are marked separately in Figure 3, they
are not seperately identifiable in this fashion in the codestream, unless the RESTART marker is utilized.
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Figure 3: A codeblock bitstream.

internal mechanisms of JPEG2000. We then consider external error detection. It should be noted
that in all cases, we assume the RESTART switch has been set at the encoder. This will allow us to
identify individual coding passes and parse a codeblock bitstream into individual coding passes at
the decoder.

3.2.1. Without External Error Detection

Let us consider four different scenarios, depending on whether the RESET and the BYPASS switches
were set to create the codestream at the encoder. For each of the four cases, let us consider errors that
have occurred in significance propagation, magnitude refinement, and clean-up passes separately.
This results in twelve different cases which we analyze individually:

Error in Significance Propagation �RESET=False, BYPASS=False� or �RESET=True, BYPASS
=False� : When there is an error in a significance propagation pass, ���� and ���� get corrupt. Thus,
none of the following coding passes can be decoded. See Figure 4-(a).

Error in Significance Propagation �RESET=False, BYPASS=True� or �RESET=True, BYPASS
=True� : In this case, ���� and ���� get corrupt. Although no future significance propagation or
clean-up passes can be decoded, one more magnitude refinement pass can be used since the bypass
option turns off arithmetic coding. See Figure 4-(b).

Error in Magnitude Refinement �RESET=False, BYPASS=False� : In this case although ����

will not be corrupt, the state information used in arithmetic coding for magnitude refinement passes
will be corrupt. Thus, all following magnitude refinement coding passes should be discarded. How-
ever, the two other types of coding passes can be decoded. See Figure 4-(c).

Error in Magnitude Refinement �RESET=False, BYPASS=True� or �RESET=True, BYPASS
=True� : Since arithmetic coding is not utilized and the bits are stored raw, a bit error only affects
a single sample �. Thus, the decoder should continue decoding the current and all future coding
passes. See Figure 4-(d).

Error in Magnitude Refinement�RESET=True, BYPASS=False� : An error in magnitude refine-
ment pass will corrupt ���� . Since neither the significance propagation nor the clean-up passes are
dependent on ���� , all future such passes can be decoded. Furthermore, since the reset switch will
reinitialize the ���� for the next magnitude refinement coding pass, all future magnitude refinement
coding passes can be decoded as well. See Figure 4-(e).

Error in Clean-up: ���� and ���� get corrupt and all following coding passes should be dis-
carded. See Figure 4-(f).

�Except for the case where byte stuffing needs to be used to avoid producing restricted marker codes
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Figure 4: Coding pass dependencies (Without External Error Detection). The portions of the bit-
stream that need to be discarded are shaded.

3.2.2. With External Error Detection

When an external mechanism for error detection is available, the information on the locations of
the errors can be utilized to improve the performance of JPEG2000. The location of the first error
within a coding pass is particularly important. If this location is known or can be estimated, the
error free section of the coding pass can be decompressed. We refer to this as partial decoding.
Furthermore, the sections of future coding passes that are only dependent on the error free portion
of the current coding pass can also be decompressed.

Similar to the previous section, we observe that partial decoding is dependent on the switches
used to create the codestream. In addition to the RESTART, RESET, and BYPASS switches, the
CAUSAL switch also plays an important role in this case. We assume that the RESTART switch
is used for all codestreams, and analyze the effects of the RESET and BYPASS switches on partial
decoding first. We will then analyze how the CAUSAL switch affects partial decoding.

Error in Significance Propagation �RESET=False, BYPASS=False�: When there is an error
in a significance propagation pass, ���� and ���� get corrupt. Although none of the future coding
passes can be decoded completely, one more magnitude refinement pass can be decoded partially.
The portion of the magnitude refinement pass that can be decoded is determined by the uncorrupt
portion of ���� and ����. See Figure 5-(a).

Error in Significance Propagation �RESET=False, BYPASS=True�: In this case, ���� get cor-
rupt. Although no future significance propagation or clean-up passes can be decoded completely,
one more magnitude refinement pass can be decoded completely. Furthermore, the following clean-
up, significance propagation, and magnitude refinement passes can be decoded partially. See Figure
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5-(b).
Error in Significance Propagation �RESET=True, BYPASS=False�: ���� and ���� get corrupt.

However, since the arithmetic coding states are reset for every coding pass, partial decoding of all
following coding passes is possible. See Figure 5-(c).

Error in Significance Propagation �RESET=True, BYPASS=True�: In this case, ���� and ����
get corrupt. One more magnitude refinement pass can be decoded completely and all remaining
passes can be decoded partially. See Figure 5-(d).

Error in Magnitude Refinement�RESET=False, BYPASS=False�: In this case although ���� will
not be corrupt, the state information used in arithmetic coding for magnitude refinement passes will
be corrupt. Thus, all following magnitude refinement coding passes should be discarded. However,
the two other types of coding passes can be decoded completely. See Figure 5-(e).

Error in Magnitude Refinement �RESET=False, BYPASS=True� or �RESET=True, BYPASS
=True�: Since arithmetic coding is not utilized and the bits are stored raw, a bit error only affects a
single sample (Except for the case, where byte stuffing needs to be used to avoid producing restricted
marker codes). Thus, the decoder should continue decoding the current and all future coding passes.
See Figure 5-(f).

Error in Magnitude Refinement �RESET=True, BYPASS=False�: An error in magnitude refine-
ment pass will corrupt ���� . Since neither the significance propagation nor the clean-up passes
are dependent on ���� , all such passes can be decoded. Furthermore, since the reset switch will
reinitialize the ���� for the next magnitude refinement coding pass, all future magnitude refinement
coding passes can be decoded as well. See Figure 5-(g).

Error in Clean-up �RESET=False, BYPASS=False�: When there is an error in a clean-up pass,
���� and ���� get corrupt. Thus, all following coding passes should be discarded. See Figure 5-(h).

Error in Clean-up �RESET=False, BYPASS=True�: Although ���� or ���� get corrupt, one
more significance propagation and magnitude refinement coding passes can be partially decoded.
See Figure 5-(i).

Error in Clean-up �RESET=True, BYPASS=False� or �RESET=True, BYPASS=True�: ���� and
���� get corrupt. However, since the arithmetic coding states are reset for every coding pass, partial
decoding of all following coding passes is possible. See Figure 5-(j).

In all the above cases, the portion of the coding passes that can be salvaged is dependent on how
the error propagates from one coding pass to another. This propagation is dependent on the order
in which samples are visited during coding. Error propagation is also dependent on whether the
codestream has been created using CAUSAL=True or CAUSAL=False. When the CAUSAL switch
is turned on, the samples in future stripes are treated as insignificant during context formation. This
affects error propagation. Thus, when an error occurs, the error propagation is much slower if
CAUSAL=True versus when CAUSAL=False. The samples that can be salvaged in future coding
passes can be identified through a careful analysis of this error propagation.

4. EXPERIMENTAL RESULTS

In this section, we provide experimental results to compare the performances of the presented meth-
ods. In our experiments, we have used the ������� Barbara, Goldhill, and Lenna images. We have
used Kakadu as our JPEG2000 codec [5] with ��� �� codeblocks, and ��	� ��	 precincts. In all
the simulations, PPM markers were utilized, and the main header and the tile header were protected
from errors. Each simulation was performed �


 times over a Binary Symmetric Channel (BSC)
with BER = �
��. We consider four different methods:

The first method is the one that is implemented in Kakadu [5]. In this method, the decoder
is dependent on the internal error detection mechanisms of JPEG2000. Once an error is detected
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Figure 5: Coding pass dependencies (With External Error Detection). The portions of the bitstream
that need to be discarded are shaded.
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in a coding pass, all remaining coding passes from the current codeblock are discarded. We refer
to this method with the acronym KDU. The second method is referred to with the acronym ECP.
Here, the decoder is relying on external error detection mechanisms to locate the erroneous coding
passes. Once an error is found in a given coding pass, the decoder discards the remaining coding
passes from that codeblock. The third method is referred to with the acronym PCP. In this method,
external error detection mechanisms are utilized to detect the first byte in a codeblock codestream
that contains an error. The decoder consumes all the bytes up to the erroneous one, and discards
the remaining codeblock codestream. Notice that this method can decode a coding pass partially.
The fourth and the final method is referred to with the acronym CCP. This method involves all of
the data recovery ideas presented earlier. Once the decoder identifies the initial error in a codeblock
codestream through external means, the decoding is performed up to the byte containing the first
error. Then the decoder performs an analysis to identify which of the remaining coding passes can be
decoded. This method allows partial decoding of future coding passes by taking error propagation
into account.

We first compare the performance of different methods. Table 1 presents the average Peak
Signal-to-Noise Ratio (PSNR) performance of different methods. In these simulations, the JPEG2000
codestreams were generated using the BYPASS, RESET, RESTART, CAUSAL, and ERTERM
modes.

Table 1: Average PSNR performance of different methods over BSC with BER = �
��.
Rate

Image (bpp) KDU ECP PCP CCP

Barbara

0.25 25.49 25.43 25.84 26.28
0.5 26.98 26.93 27.52 28.34
1.0 27.76 27.64 28.41 29.57

Goldhill

0.25 27.84 27.83 28.15 28.62
0.5 29.08 29.01 29.50 30.26
1.0 29.88 29.76 30.39 31.49

Lenna

0.25 29.59 29.53 29.95 30.70
0.5 30.54 30.43 30.98 32.00
1.0 31.29 31.08 31.75 33.02

As illustrated in Table 1, the proposed methods can provide significant gains in average PSNR.
It is worth mentioning that for most of the cases, the KDU and ECP simulations produced identical
results. This suggests that the internal error detection mechanisms of JPEG2000 function well.
However, notice that the ECP results are slightly lower than those of KDU. When an error occurs in
the last bits of a codeword used for byte alignment, ECP identifes these as errors and stops further
decompression. Since these “errors” are not detected by KDU, decompression continues resulting
in slight increase in performance. It is possible for ECP (as well as PCP and CCP) to detect this
error, although we have not yet added this detection into our software.

To analyze these results further, consider the plot presented in Figure 6. In the figure, the KDU
and CCP methods are compared at 1.0 bits/pixel using the Lenna image. The plot was obtained from
the same �


 realizations that were used to generate Table 1. This plot illustrates the distribution
of the PSNR gain obtained by using CCP instead of KDU. The x-axis of the plot indicates PSNR (in
dB), and the y-axis indicates the cumulative percentage of realizations. From this plot, we can infer
that the gain provided by CCP in these simulations has been as large as 	�� dB. We can also see
that CCP provided a gain greater than ��� dB in roughly �
� of the cases. As mentioned in earlier,
“errors” in stuffing bits that should be ignored are not ignored in the current version of our software.
This results in KDU outperforming CCP in some instances as seen in the figure. We expect larger

Proceedings of the Data Compression Conference (DCC’03) 
1068-0314/03 $17.00 © 2003 IEEE 



average gains when this feature is added to our software.
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Figure 6: The distribution of the PSNR gain provided by CCP over KDU.

We present the average PSNR performance of KDU and CCP using different modes in Table 2.
These results illustrate that the utilization of the CAUSAL mode can provide significant improve-
ment in error resilience when the CCP approach is adopted. As explained earlier, this is due to the
error propagation being slower in CAUSAL = True mode vs. CAUSAL = False mode.

Table 2: The average PSNR (in dB) performances of KDU and CCP over the BSC with BER = �
��

using different modes.
KDU-CCP

RESET

Rate RESET RESET, RESTART RESET, RESTART RESTART, ERTERM

Image (bpp) RESTART, ERTERM ERTERM, CAUSAL ERTERM, BYPASS CAUSAL, BYPASS

Barbara

0.25 25.54-26.21 25.53-26.39 25.52-26.10 25.48-26.28
0.5 26.92-28.01 27.01-28.41 26.84-27.93 26.98-28.34
1.0 27.69-29.27 27.73-29.75 27.82-29.20 27.76-29.57

Goldhill

0.25 27.86-28.53 27.83-28.65 27.95-28.54 27.84-28.62
0.5 28.86-29.83 28.87-30.18 28.96-29.82 29.08-30.26
1.0 29.60-30.94 29.82-31.64 29.75-30.93 29.88-31.48

Lenna

0.25 29.88-30.75 29.58-30.78 27.77-30.52 29.59-30.70
0.5 30.61-31.82 30.62-32.34 30.78-31.80 30.54-32.00
1.0 31.31-32.78 31.12-33.24 31.39-32.58 31.29-33.02
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