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Abstract

This paper presents an improved version of an algo-
rithm designed to perform image restoration via non-
linear interpolative vector quantization (NLIVQ). The
improvement results from using lapped blocks during
the encoding process. The algorithm is trained on
original and diffraction-limited image pairs. The dis-
crete cosine transform is used in the codebook design
process to control complexity. Simulation results are
presented which demonstrate improvements over the
non-lapped algorithm in both observed image quality
and peak signal-to-noise ratio. In addition, the non-
linearity of the algorithm is shown to produce super-
resolution in the restored images.

1 Introduction

Vector quantization (VQ) maps consecutive, usu-
ally non-overlapping, segments of input data to their
best matching entry in a codebook of reproduction
vectors [4]. VQ is generally considered a data compres-
sion technique. However, VQ algorithms have been
presented which perform other signal processing tasks
concurrently with compression. These span the range
from speech processing tasks such as speaker recogni-
tion and noise suppression, to image processing tasks
like half-toning, edge detection, enhancement, classi-
fication, reconstruction, and interpolation [2].

In earlier work [7, 8], a novel algorithm was pre-
sented for image super-resolution based on nonlinear
interpolative vector quantization (NLIVQ) [3]. This
algorithm addressed the classical problem of removing
the blur caused by a diffraction-limited optical system
[1]. Such a system acts as a low pass filter with an ab-
solute spatial cutoff frequency proportional to its exit
pupil diameter, and completely suppresses spatial fre-
quency components of the original scene outside the
system passband [5]. Image super-resolution encom-
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passes correction of the filtering in the passband and
some recovery of spatial frequency components outside
the passband [6].

An improved version of the algorithm is presented
in this work. As before, the algorithm is trained on
original and diffraction-limited image pairs which are
assumed to be representative of the class of images
of interest. The DCT is used to process the image
blocks in order to manage codebook complexity. Im-
provements result from lapping the blocks during en-
coding. This suppresses many of the artifacts present
in images processed with earlier versions of the algo-
rithm and produces super-resolved images which are
qualitatively and quantitatively better.

The following sections present a brief review of the
algorithm design process, the improved lapped algo-
rithm, and simulation results which demonstrate the
improvements in image super-resolution as compared
with earlier non-lapped versions of the algorithm.

2 Nonlinear Interpolative VQ and Im-
age Restoration

In this section, the basic theory behind the algo-
rithm and its design are discussed. The task at hand
is to design an operator which takes as its input a
blurred image block and produces the unblurred orig-
inal block. This is done by training the algorithm with
a large number of blurred and unblurred images. Let
{Fi,Gi}?zl be a sequence of image pairs, where F*
and G* are the original and diffraction-limited N x N
images, respectively. Decompose each image pair of
the sequence into M x M blocks which will serve as
the VQ training data. Let f* and ¢%* be block k from
Ft and GY, respectively. Assume that the encoder E,
decoder D, and the associated codebook C, are given



for a VQ that minimizes the distortion
D = E [d(¢%*,5%)] . )

The process for choosing the quantized block §** can
be written as

gik =D (E (g’k)) = arg min d (gik, Cl)’
CJGC

(2)

where ¢; refers to entry ! of C.

Define the nonlinear VQ restoration algorithm as
a new decoder D*, and its associated codebook C*,
which minimizes the conditional expectation

D=E[ d(fik’fik)z E(gik) =1 }, (3)

where E returns the index of the matching code-
book entry. For a given set of training data, let
B, = {f”c :E (g'ik) = l}. Define entry [ of C* as the
centroid of By, or

i~ (@)

Finally, the nonlinear VQ restoration algorithm is
given by

Z fik-

fikeB;

@

fik =D* (E (gik)) = C;;(gu;), (5)
where fi is the restored image block.

It is important to note that the blurred imagery
must be oversampled sufficiently to avoid aliasing if
the algorithm achieves super-resolution.

3 Codebook Design and Lapped En-
coding

The encoder codebook C is designed using a tech-
nique based on the discrete cosine transform (DCT).
The DCT-based scheme, which is non-iterative, al-
lows much larger codebooks than are practical with
the Lloyd algorithm. The procedure for designing the
DCT-based encoder is summarized for M x M blocks
in the following steps:

1. Compute the DCT §* of each input block, g®*.

2. For an encoding rate of R bits/pixel, allocate
L = RM? bits among the transform coefficients
to minimize the mean-squared error distortion of
the quantized DCT blocks.

. If Ly is the number of bits allocated to the (m,n)
DCT coefficient, design the (scalar) Lloyd-Max
quantizer having 2'=~ levels for that coefficient.
The coefficient is assumed to be Laplacian dis-
tributed.
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4. Define the fixed-length vector quantizer encoder
E as the concatenation of the binary codes for the
(scalar quantized) transform coefficients. This
concatenation (or its decimal equivalent) is the
codeword index.

The next step is to compute the codebook C* for
the nonlinear VQ decoder. This follows directly from
the encoder design in deterministic fashion and can be
summarized in the following steps

1. For each input block g% derived from the set of
N diffraction-limited images, as defined above,
compute the index produced by the encoder
E(g*) = q.

. Add the block f¥*, as defined above, to the run-
ning sum for codeword ¢ and increment the

g
counter s; for that codeword.

After all blocks in the training set have been pro-
cessed according to steps (1) and (2), compute
each codeword in C* as the average of each run-

N
c

= £
Z.
g

ning sum according to cj

Restoration of one image block requires the calcula-
tion of the DCT, the scalar quantization of the DCT
coeflicients, and a table lookup. The computational
complexity of these calculations grows linearly with
the number of pixels in the image block (M?) and is
roughly independent of the encoding rate (R).

The lapped encoding used in the improved algo-
rithm does not require a new codebook design pro-
cedure. The difference is that lapped blocks in the
blurred image are mapped to a sub-block in the re-
stored image. For example, 3 x 3 blocks in the blurred
image may map to a single pixel (the center pixel of
the restored block) in the output image. The blocks
have a two column overlap in this case. For 4 x 4
blocks, the output may be a 2 x 2 or 1 x 1 sub-block
from the output block produced by the decoder code-
book. This is depicted graphically in Figure 1. Only
the 3 x 3 block size was used in this work. The im-
proved results indicate that the larger errors in the
output blocks are near the block edges, the source of
the blocking artifacts seen in the non-lapped algorithm
output.

The simulation results described below are obtained
by applying the algorithm to mean-removed image
blocks. Estimation of the mean of the restored block
is dealt with as a separate problem. This allows all of
the bits available to be used in representing the AC
information of the block, resulting in better perfor-
mance. Restoration of the block mean is done with a
Wiener filter process.
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Figure 1: Lapped encoder contrasted with the non-lapped version for 3 x 3 blocks

The parameters for the results below are: 1) 3 x 3
blocks; 2) 12 bits/mean-removed block; 3) a training
set of 70 (512 x 512) image pairs of aerial views of ur-
ban areas; 4) optical cutoff frequency equal to half the
folding frequency; and 5) no noise in the blurred im-
ages. Figure 2 displays crops of an “original” test im-
age (outside the training set), the blurred image pro-
duced from the original, and non-lapped and lapped
restorations. This image is similar in edge content to
many of the images in the training set. Note that near
the edge of the lapped restoration the pixels for which
there is insufficient support for the mask have been set
to zero.

In general, peak signal to noise ratio (PSNR) val-
ues of images processed by the algorithm improved by
1.5 to 2.5 dB in the non-lapped case. The lapped al-
gorithm produces improvements in the 2.5 to 4.5 dB
range. This quantitative improvement in the images is
matched by a significant improvement in visual qual-
ity. This is true for images both in and out of the
training set.

Super-resolution is usually defined in terms of the
recovery of spatial frequency components and the im-
proved performance in this regard is shown in Figure
3, where the logio of the Fourier transform magni-
tudes of the images from Figure 2 are displayed. It is
evident that the stronger features in the original spec-
trum have reappeared in the non-lapped and lapped
restoration spectra. The effect is more pronounced in
the lapped case.

4 Conclusion

An improved algorithm for image super-resolution
based on nonlinear interpolative vector quantization
was presented. The NLIVQ training process deter-
mines the important statistical properties of the data
and accomplishes the design of a nonlinear restoration
algorithm. A DCT encoder was employed to manage
the codebook complexity and avoid iterative training.
The improvements resulting from using lapped blocks
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in the decoder can be seen in the suppression of arti-
facts present in earlier results. Both quantitative and
qualitative improvements were obtained in addition to
a increased super-resolution of the processed images.

References
[1) H. C. Andrews and B. R. Hunt, Digital Image
Restoration, Prentice-Hall, 1977.

(2] P. C. Cosman, K. L. Oehler, E. A. Riskin and R.
M. Gray, “Using vector quantization for image pro-
cessing,” Proc. IEEE, Vol. 81, pp. 1325-41, 1993.

[3] A. Gersho, “Optimal nonlinear interpolative vec-
tor quantization,” IEFE Trans. Comm., Vol. 38,
pp. 1285-87, 1990.

[4] A. Gersho and R. M. Gray, Vector Quantization
and Signal Compression, Kluwer, 1992.

[5] J. W. Goodman, Introduction to Fourier Optics,
McGraw-Hill, 1968.

[6] B. R. Hunt, “Super-resolution of images: algo-
rithms, principles, performance,” Int. J. Imaging
Sys. and Tech., Vol. 6, pp. 297-304, 1995.

[7] D. G. Sheppard, A. Bilgin, M. S. Nadar, B. R.
Hunt, M. W. Marcellin, “A vector quantizer for im-
age restoration,” IEEE International Conference
on Image Processing, Lausanne, Switzerland, Sep.

16-19, 1996, pp. 439-41.

D. G. Sheppard, A. Bilgin, M. S. Nadar, B. R.
Hunt, M. W. Marcellin, “A vector quantizer for
image restoration,” IEFE Transactions on Image
Processing, to appear.



(c) Non-lapped restoration (PSNR. = 23.85 dB) (d) Lapped restoration (PSNR = 25.77 dB)

Figure 2: Crops from the images used to test the algorithms
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(a) Original image spectrum (b) Blurred image spectrum

(c) Non-lapped restoration spectrum (d) Lapped restoration spectrum

Figure 3: Spectra of the images used to test the algorithms.
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