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Abstract— We propose a framework for iterative joint source-
channel decoding of JPEG2000 codestreams. At the encoder,
JPEG2000 is used to perform source coding with certain error
resilience (ER) modes, and LDPC codes are used to perform
channel coding. During decoding, the source decoder uses the
ER modes to identify corrupt sections of the codestream and
provides this information to the channel decoder. The decoding
is carried out jointly in an iterative fashion. Our results indicate
that the proposed method improves the convergence rate as well
as the overall system performance.

I. INTRODUCTION

It has been observed that combining channel and source
coding can improve overall error control performance [1].
In [2], Turbo codes are applied to compressed images/video
coded by different source coding schemes, such as vector
quantization, JPEG and MPEG. Redundant source information
or some unique structure in these source codes are utilized by
the channel decoder.

This paper presents a joint source-channel decoding scheme
similar to those in [2], but based on a JPEG2000 [3] source
coder and an LDPC channel coder. JPEG2000 is the latest
international image compression standard, and offers a number
of functionalities, including error resilience tools. These tools
combat error propagation in the JPEG2000 codestreams during
transmission over noisy channels. As we will demonstrate,
they can also provide effective feedback information to the
channel decoder. Experimental results show significant im-
provement in PSNR of reconstructed images and in reduction
of residual errors under different channel conditions.

The paper is organized as follows: Section II presents the
proposed joint source-channel decoding scheme. Section III
includes experimental results. Section IV concludes the paper.

II. ITERATIVE JOINT SOURCE-CHANNEL DECODING OF

JPEG2000 CODESTREAMS

LDPC codes were invented by Gallager in 1960 [4], and
have good block error correcting performance. These codes
did not gain much attention until the mid-1990’s. The iterative
decoding algorithm provided in [4] was rediscovered as the
belief propagation or sum-product algorithm in [5], [6]. Before
we describe our joint decoding scheme, we first present a high
level description of this LDPC decoding algorithm.

The Tanner graph [7] representation of a parity check matrix
for an LDPC code is shown in Figure 1. In Fig. 1, the

���
represent variable nodes in a codeword � , and the ��� represent
check nodes. Variable nodes

� �
are connected to ��� according
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Fig. 1. Tanner graph of an LDPC code

to the rows of a parity check matrix � of an LDPC code. Each
such row specifies one check equation. The corresponding �
matrix of Fig. 1 is:

����������� �������� ���
����

We are interested in

finding the probability Pr � � ��� ���  "!$#&%('
, where � is the

transmitted codeword,
 

is the received word, and
#)%

is the
event that the bits in codeword � satisfy all the parity check
equations involving

� �
. Gallager stated the following theorem

in [4]:

Pr � �*� � �+�  "!$# % '
Pr � � �,� ���  "!$#&%-' � ��."/ �/ �10�243$57698;: � �=< 0>8@?(3A5B6C2C:ED98 � ��.GFH/ � ? � 'I'0�243$57698;: � ��. 0>8 ? 3A5B6C2C:ED98 � ��.GFH/ � ? � 'I'(1)
Here,

/ �
is the probability that

�*�
is 1 given the received

digit J � , and
/ � � is the probability that the K th bit in the L th

check equation is 1 given the received digit of that bit. The
assumption is that the bits involved in one check equation are
statistically independent of each other. Notation MON�P@Q denotes
the neighborhood of one node in the graph model, i.e., all
the other nodes that are connected to that node. NotationMON$L
QHRSK means the neighborhood of node j except node i. The
message from variable node K to check node L is denoted byT � � �VU ' , which is the probability that

�W� � U given the extrinsic
information from all check nodes other than L and the received
digit J � . The message from check node L to variable node K
is denoted by X � � �CU ' , representing the probability that the L th
check equation is satisfied given

��� � U and the information
from all other variable nodes connected to L . Specifically, the
check nodes gather information from the variable nodes to
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compute

X � � � � ' � �F < �F �
8@? 3$5B6C2C: D48 �

��. F T � ? � � �S'E' ! (2)

X � � � ��' � �F . �F �
8 ? 3$5B6C2C: D48 �

��. F T � ? � � �S'E'
�

(3)

The variable nodes then gather information from the check
nodes to computeT � ��� ��' ���)� � � ��."/ � ' �

2 ? 3$57648 : DC2 X � ?
� � ��' ! (4)

T � � � ��' ���)� � / � �
2 ? 3$5B698 : D92 X � ?

� � ��' � (5)

The constant
� � � assures T � ��� ��'B< T � � � ��' � �

. Now we can
compute the “pseudoposterior probabilities” [6] � � �VU ' .

� � � � ' ���,� � ��."/ � ' �
2 ? 3$5B698 : X � ?

� � ��' ! (6)

� � � ��' ���,� / � �
2 ? 3A5B698;: X � ?

� � ��' � (7)

Again, constant
�)�

assures � � � ��'&< � � � ��' � �
. The decision�� �)� �

is made if � � � ��'�� � �
	
. The entire process is repeated

in an iterative fashion.
To avoid the many multiplications in the algorithm, log

domain computation is adopted. Then � � � � ' denotes the log-
APP ratio of variable node

� �
, also called the log-likelihood

ratio (LLR). Similarly, � � T � � ' is the LLR of the message T � � ,
and � �-X � � ' is the LLR of the message X � � .

The decoding procedure starts with initialization. For a
binary-input AWGN channel, symbol � � takes values on N +1,-
1 Q , corresponding to

� �
being N 0,1 Q . The initial LLR of

� �
is: � � �=� ' � log

Pr �� � � < � � � � '
Pr �� �)� . � � � � ' � (8)

Setting the initial � � T � � ' to be the same as � � � � ' , the
computation can be obtained straightforwardly by substituting
the LLR definitions into Equations 2 – 7.

� �(X � � ' � F������������ N �
8 ? 3�� 692C: D98

������� � �F � � T � ? � ' Q
�

(9)

� � T � � ' � � ��� � ' < �
2 ? 3�� 648 : DC2 � �-X � ?

� ' �
(10)

� � � � ' � � ��� � ' < �
243!� 698 : � �-X �

� ' �
(11)

If � � � � '#" �
, the estimated bit

��*� � �
, otherwise

��*� � �
.� � � � ' can be viewed as the soft value of the binary random

variable
� �

. The above procedure is repeated until some
maximum desired iteration number is reached, or a legal
codeword is detected.

The nature of the algorithm implies that more reliable bits
have higher soft values, i.e., further away from the threshold

(zero). Bit errors occur around the threshold with high prob-
abilities. If a bit is known to be correct, increasing its soft
value can help correct errors via the positive message sent
from this bit. As mentioned in the introduction, JPEG2000 is
able to provide such source information to help the channel
decoder. The following paragraph provides a brief overview
of JPEG2000, including the relevant error resilience tools.

In JPEG2000, an image is divided into non-overlapping
rectangular regions, called tiles. The array of samples from
one component (if the image has multiple components) which
are in the area of a tile is called a tile-component. The wavelet
transform is performed on each tile-component, generating
subbands of different resolutions depending on the number
of levels of wavelet transform. The resulting wavelet subbands
are partitioned into a number of different geometric structures.
The smallest structure is called a codeblock. Codeblocks are
formed by partitioning the subbands. The wavelet coefficients
in each codeblock are then quantized. The quantized coeffi-
cients in a given codeblock form a sequence of binary arrays
by filling each binary array with one bit from each coefficient
(from most significant bit to least significant bit). These
binary arrays are called bitplanes. Each bitplane is encoded
in three passes, referred to as coding passes. The JPEG2000
codestream is then formed by combining the coding passes
from different codeblocks. Arithmetic coding is incorporated
in the JPEG2000 bit-plane compression process. JPEG2000
provides several error resilience tools, including the arithmetic
coder switches RESTART and ERTERM. RESTART causes
the arithmetic coder to be restarted at the beginning of each
coding pass. In this case, each coding pass has a separate
arithmetic codeword segment. When the ERTERM switch is
turned on, the source decoder is able to reliably detect when
an arithmetic codeword segment is corrupted. If the JPEG2000
codestream is generated using these two mode switches, the
decoder can identify that an error has occurred in a given
coding pass. When an error occurs in a coding pass, common
practice is to discard the current and all future coding passes of
the current codeblock [3]. The decoder then starts decoding
the first coding pass in the next codeblock. In this way, bit
errors do not propagate from one codeblock to the next.

In our work, information on which coding passes in each
codeblock are decodable is fed back to the LDPC decoder.
Aided by such feedback source information, increasing the
soft values of the variable nodes representing those correct
coding passes can reduce the bit error rate and accelerate the
iterative decoding procedure. The details of our scheme are
described as follows:

After JPEG2000 encoding of an image, the resulting code-
stream is sequentially divided into channel codewords. These
channel codewords are mapped into channel symbols as � � �� . �S'%$ 8 . The noisy channel will introduce errors into these
channel symbols. If noise & is AWGN, the received words
have symbols J � � � � < & . One iteration of LDPC decoding
is performed and the output codestream is then decoded by
JPEG2000. With the error resilience mode switches on, the
correct coding passes are detected in each channel codeword.

1962



The source information is passed to the channel decoder and
used to modify the soft values of the variable nodes involved
in correct coding passes as:

� ��� � ' ��� � � � � ' .�� ! if � � � � '�� ���� � � � '&<�� ! if � � � � '�� � � (12)

In the expression above,
�

is a large positive weighting
factor. Due to the LDPC decoding algorithm, extremely large
values of

�
yield comparable results to those obtained with

moderate values of
�
. In the experiments,

�
is chosen to be 5.

It is important to note that coding passes must be treated
sequentially. Due to the context dependent arithmetic coding
employed in JPEG2000, a coding pass can only be decoded
when all the previous coding passes in the same codeblock are
correct. Thus the soft values can be modified for all bits within
a codeblock, up to but not including those in the first coding
pass containing incorrectly decoded bits. After modification of
the soft values for all code blocks, the next iteration of channel
decoding is performed. This iterative decoding procedure is
repeated until some stopping criterion is met.

III. EXPERIMENTAL RESULTS

An important factor that affects overall performance is the
codeblock size used during the creation of the JPEG2000
codestream. We have used the KakaduV3.3 implementation of
JPEG2000 [8]. By default, Kakadu uses 64 	 64 codeblocks.
In addition to this size, we have also tested our scheme
using codeblocks size of 32 	 32, 16 	 16 and 8 	 8. Different
codeblock sizes affect the compression performance as well as
the lengths of the coding passes. Smaller codeblock sizes result
in shorter coding passes and some reduction in compression
efficiency. From the point view of joint iterative decoding,
shorter coding passes are preferable, since they provide better
localization. Shorter coding passes result in more coding
passes in one channel codeword. These short error-free coding
passes can participate in accelerating bit error corrections in
their channel codewords.

In our experiments, a (3648, 3135) LDPC code is selected.
In each case where a noisy channel is employed, 1000 simula-
tions are performed. The 512 	 512 Lenna image compressed
at 1.0 bits/pixel is used as the test image. As mentioned
above, different codeblock sizes are employed to form the
JPEG2000 codestream. For a codeblock size of 64 	 64, error-
free decoding provides a reconstructed image with a PSNR
of 40.24 dB; for codeblock sizes of 32 	 32, 16 	 16 and 8 	 8,
error-free decoding yields PSNR values of 39.80 dB, 39.07
dB, and 37.87 dB, respectively.

Tables I – III list the average PSNR results of our joint
decoding method versus the usual separate decoding method
under different channel conditions, i.e., when the channel
SNR equals 4.2, 4.3 and 4.4 dB, respectively. A maximum
number of 40 iterations are carried out for each method. From
these tables, we can see the effect of the codeblock size. As
expected, 
 PSNR increases when codeblock size decreases. It
can also be observed that under lower channel SNR conditions,
 PSNR is generally larger. However eventually, in the very

TABLE I

AVERAGE PSNR FOR LENNA AFTER 40 ITERATIONS FOR A 4.2 DB

AWGN CHANNEL

Channel SNR 4.2 dB

With FB No FB � PSNR

CB 32 � 32 30.1941 28.3240 1.8701

CB 16 � 16 32.0528 28.6444 3.4083

CB 8 � 8 36.5015 28.8784 7.6231

TABLE II

AVERAGE PSNR FOR LENNA AFTER 40 ITERATIONS FOR A 4.3 DB

AWGN CHANNEL

Channel SNR 4.3 dB

With FB No FB � PSNR

CB 32 � 32 35.0525 33.2102 1.8423

CB 16 � 16 36.5079 33.3112 3.1968

CB 8 � 8 37.5510 33.0091 4.5419

low channel SNR case, the PSNR results from both methods
are both extremely low, close to zero, and the gain between
the two methods disappears. In Table I, the gain between the
two methods for a codeblock size of 32 	 32 (1.8701 dB) is
close to that in Table II (1.8423 dB). Decreasing the channel
SNR further results in immediate and significant damage to
the performance under both methods for this codeblock size.
For the smaller codeblock sizes, 
 PSNR continues to increase
somewhat as channel SNR is decreased, before eventually falls
precipitously.

The distribution of the gains (i.e., 
 PSNRs) between the
two methods can also be illustrative. Fig. 2 – 4 show the

TABLE III

AVERAGE PSNR FOR LENNA AFTER 40 ITERATIONS FOR A 4.4 DB

AWGN CHANNEL

Channel SNR 4.4 dB

With FB No FB � PSNR

CB 32 � 32 38.0060 37.0637 0.9422

CB 16 � 16 38.4179 36.9323 1.4856

CB 8 � 8 37.8090 36.0044 1.8046

TABLE IV

RESIDUAL BER COMPARISON BETWEEN TWO METHODS

Channel SNR (dB) 4.2 4.3 4.4

With FB 5 �� ����������������� ��� ����������������� ��� ������ �!�������
No FB 5 ��� ���#"�$������ ��� $�� �#��������� ��� ��� "%#���&�!��� ���

With FB 40 ��� ��������������(' ��� "��������������(' �� �#"����&�!������)
No FB 40 ��� $�$����*����� ��� ��� $������������ �(' $��+�������&�!��� �('
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Fig. 2. CDF of � PSNR for channel SNR = 4.2 dB.
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Fig. 3. CDF of � PSNR for channel SNR = 4.3 dB.

cumulative distribution function (CDF) of 
 PSNR under
different channel conditions. For example, it can be seen in
Fig. 3 that the proposed method results in PSNR gains larger
than 5 dB in roughly 10 � of the simulations for a codeblock
size of 32 	 32. However for codeblock sizes of 16 	 16 and
8 	 8, PSNR gains larger than 5 dB occur in roughly 20 � and
30 � of the simulations, respectively.

In Fig. 2 – 4, there are cases when 
 PSNR is negative.
From Table IV, we can clearly see that the joint decoding
method improves the overall error correction performance.
However, the method does not determine which particular
bits are corrected. The weighting applied to the variable
nodes causes changes in the relationship between variable
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Fig. 4. CDF of � PSNR for channel SNR = 4.4 dB.

TABLE V

PERCENTAGES BELOW ZERO IN CDF OF � PSNR

Channel SNR 4.2 dB 4.3 dB 4.4 dB

CB 32 � 32 4.13 � 4.52 � 3.20 �
CB 16 � 16 1.84 � 0.50 � 1.05 �
CB 8 � 8 0.19 � 0.00 � 0.00 �

nodes and check nodes. The overall tendency is to correct
erroneous bits. But, locally, some unexpected miscorrections
may occur. Thus, some bits may be decoded correctly after
the final iteration by the separate decoding method, while
decoded incorrectly by the joint decoding method. This is
true, even though the number of the residual error bits by
the latter method is significantly less than that by the former
method. This, together with the fact that different source bits
are of different importance, can explain the negative 
 PSNR
values on the distribution figures. From the figures, we note
that the percentage of negative 
 PSNRs is related to the
codeblock size. Table V gives the percentage of negative cases
for various parameter choices. The smaller the codeblock size,
the smaller the percentage of negative 
 PSNRs. This result
is straightforward from the analysis in previous sections due
to the stronger error correction ability and less residual errors
associated with smaller codeblock sizes.

When designing a system to transmit images, the channel
conditions are often assumed to be known. In many practical
situations, actual channel statistics are not known, or they
may vary in time, such as Internet or wireless channels. Such
channel mismatch causes performance loss, and a channel
SNR decrease is more harmful than a channel SNR increase.
From the data in previous tables, it can be seen that the
channel code chosen in this paper is not strong enough on
its own to protect the source codestream to a high level
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TABLE VI

AVERAGE PSNR FOR LENA 512 � 512 AFTER 40 ITERATIONS

Channel SNR 4.5 dB

With FB No FB � PSNR

CB 32 � 32 39.3080 38.8790 0.4290

CB 16 � 16 38.9274 38.4678 0.4596

CB 8 � 8 37.8703 37.3792 0.4912

of reliability. Performance under these conditions can be
considered as mismatched. The proposed iterative decoding
method always outperforms the separate decoding method in
the mismatched case. On the other hand, if the channel SNR is
increased further to achieve almost error-free decoding, system
performance can be considered as the matched case. Table VI
lists the average PSNR results of the two methods after 40
iterations when the channel SNR is 4.5 dB. We note that in
Table VI, for a codeblock size of 8 	 8, our joint decoding
method is almost always able to decode the source codestream
error-free (99.9 � ) while the separate decoding scheme is not
(70.7 � ). The joint decoding scheme under that condition can
be considered as the matched case. From this, it can be
concluded that a weaker channel code can be adopted in the
joint decoding scheme as compared to the separate decoding
scheme, for a given channel SNR.

Finally, we examine the convergence rate of the two
schemes. This can be shown in the plot of PSNR vs. iteration
number, as in Fig. 5 – 6. From these figures, it is clear that the
joint decoding method accelerates convergence. For example,
in Fig. 5, when the channel SNR is 4.3 dB and the codeblock
size is 32 	 32, the joint decoding method takes 16 iterations
to reach a PSNR of 33 dB, which is 9 iterations less than the
separate decoding method.

IV. CONCLUSION

From the experimental results, it is clear that the proposed
joint iterative decoding method can improve overall system
performance. For a given PSNR requirement, the joint iterative
decoding method requires fewer iterations than the separate
decoding method. For a given channel SNR condition, the
joint iterative decoding method can improve the quality of the
reconstructed images. In channel mismatch cases, the proposed
joint decoding method is less sensitive to noise than separate
decoding. The use of our joint decoding scheme increases the
operational range of the communication system.
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