ECE369: Fundamentals of Computer Architecture

ECE 369
MWF 10:00 AM - 10:50 AM in HARV-302
Instructor Teaching Assistant
Name: | Ali Akoglu Chad Rossmeisl
Office: | ECE 356-B
Phone: | (520) 626-5149 TBA
Email: | akoglu@ece.arizona.edu rossmeis@email.arizona.edu
Office | Mondays 11:00 AM - 12:00 Tuesdays 9:00 AM - 11:00 AM,
Hours: | Wednesdays 3:30- 4:30 or Thursdays 2:00PM- 3:30 PM
by appointment Fridays 10:00 AM-11:30AM, or
by appointment

ECE369 1

General Policies, Tips

e Computer Organization and Design:
The Hardware/Software Interface, Third Edition, Revised Printing

* Prerequisite: ECE274 & Programming in C

 8to 12 assignments, 2 mid-terms, final project, final comprehensive exam
* NO LATE ASSIGNMENTS

 Make-ups may be arranged prior to the scheduled activity.

* Inquiries about graded material => within 3 days of receiving a grade.

* You are encouraged to discuss the assignment specifications with your
instructor, your teaching assistant, and your fellow students. However, anything
you submit for grading must be unique and should NOT be a duplicate of
another source.

* Read before the class

» Participate and ask questions
 Manage your time

e Start working on assignments early

ECE369

Fun Stuff...

Component Percentage Percentage Grade
Assignments 15 90-100% A
Midterm-I 20 80-89% B
Midterm-II 20 70-79% C
Project 15 60-69% D
Final exam 30 Below 60% E

ECE369 3

Announcements

e ECE250LAB
— TA lab hours, office hours, etc.

 Assignments & Project
— Pairs only !l
— Who is my partner?

e Assignment-0 Due August 29th

e Lecture notes on the web
— http://lece.arizona.edu/~ece369/

ECE369

How to survive in ece369 ?

 Readings

— General principles and historical perspectives

e Assighments
— Apply the knowledge

 Project
— Hands on practice
— Xilinx ISE Design Tool
— Verilog

ECE369

Objective

e Understand “how computer works”
 Appreciate the design tradeoffs

« Talk/Discuss/Express/Explain/Articulate/.....
at ALL LEVELS

EEEEEE

Chapter 1

EEEEEE

Introduction

« This course is all about how computers work

« But what do we mean by a computer?
— Different types: desktop, servers, embedded devices
— Different uses: automobiles, graphics, finance, genomics...
— Different manufacturers: Intel, Apple, IBM, Microsoft, Sun...
— Different underlying technologies and different costs!

« Analogy: Consider a course on “automotive vehicles”
— Many similarities from vehicle to vehicle (e.g., wheels)

— Huge differences from vehicle to vehicle (e.g., gas vs. electric)

ECE369

Why learn this stuff?

 You want to call yourself a “computer engineer”
 You want to build software people use (need performance)

* You need to make a purchasing decision or offer “expert” advice

« Both Hardware and Software affect performance:
— Algorithm determines number of source-level statements

— Language/Compiler/Architecture determine machine instructions
(Chapter 2 and 3)

— Processor/Memory determine how fast instructions are executed
(Chapter 5, 6, and 7)

 Assessing and Understanding Performance in Chapter 4

ECE369 9

What is a computer?

« Components:
— input (mouse, keyboard)
— output (display, printer)
— memory (disk drives, DRAM, SRAM, CD)
— network
 Our primary focus: the processor (datapath and control)
— Implemented using millions of transistors
— Impossible to understand by looking at each transistor
— We need...

ECE369

Abstraction

* Delving into the depths
reveals more information

« An abstraction omits unneeded
detail,
helps us cope with complexity

What are some of the details that
appear in these familiar
abstractions?

Highi-lerwal

program
fin)

HEsamialy

languaga
rarm

ior MIPS)

Binary maching

language
program
{ior MIPS)

ECE369

swaplint vI[1, imt k]
Lint temp;
tenp = wlkl:
vl[k] = wlk+l]:
vilik+1l] = tenp:

'

Compiler

1

¥

SWap;
muli 52, §5.4
add F2, 4.5
I Fla. DCEZD
| w $1&,. 40§22
L Fle. DOEZD
5w Fla. FCEEZD
ir L]
AEsarrinler

1

NO0GN0001 01 0000 1000505000001 1000
NG0G00000G0 L 10030001 1000001 30001
10001 10002 10001000000 CN000000000
100011001 81 1001 00000000000000 100
10101 108121 2081000030 S0005000000
1010120002 10001 0000030000000 200
00001 112 10000300050 50000051 000

11

Instruction Set Architecture

« A very important abstraction
— interface between hardware and low-level software
— standardizes instructions, machine language bit patterns, etc.
— advantage: different implementations of the same architecture

— disadvantage: sometimes prevents using new innovations

e Modern instruction set architectures:
— 1A-32, PowerPC, MIPS, SPARC, ARM, and others

ECE369 1 2

Sneak Peak (Lecture 18)

t/

C
L

Read
address

Instruction

Instruction
memory

_I:

>Add Sk

Registers
Read :
® register
g Read
Read data1
register 2
Write Read
register data 2
Write
™ data
RegWrite |
16 :
3 [Sign
‘F’

extend

v

ALU operation

MemWrite

Write

L J

data

Address

Read
data

Data
memory

MemRead

MemtoReqg

W)

ECE369

13

Chapter 4

ECE369

14

Performance

« Measure, Report, and Summarize

« Make intelligent choices

« See through the marketing hype

« Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

ECE369 1 5

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)
Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

sHow much faster is the Concorde compared to the 7477

sHow much bigger is the 747 than the Douglas DC-8?

ECE369

16

Computer Performance: TIME, TIME, TIME

« Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must | wait for the database query?

e Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

« If we upgrade a machine with a new processor what do we increase?

e |If we add a new machine to the lab what do we increase?

ECE369 1 7

Execution Time

« Elapsed Time

— counts everything (disk and memory accesses, I/O, etc.)

— auseful number, but often not good for comparison purposes
« CPUtime

— doesn't count I/O or time spent running other programs

— can be broken up into system time, and user time

 Our focus: user CPU time
— time spent executing the lines of code that are "in" our program

ECE369

18

Book's Definition of Performance

« For some program running on machine X,

Performance, = 1/ Execution timey

e "XIs ntimes faster than Y"

Performance, /Performance, =n

 Problem:
— machine A runs a program in 20 seconds
— machine B runs the same program in 25 seconds

ECE369

19

Clock Cycles

* Instead of reporting execution time in seconds, we often use cycles

seconds cycles seconds
= X

program program cycle

 Clock “ticks” indicate when to start activities (one abstraction):

| | | | | | | | >
I I I I I I I I ”

time

« cycletime =time between ticks = seconds per cycle
 clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec)

1
4><109

A 4 Ghz. clock has a

x102 = 250 picoseconds (ps) Cycle time

ECE369 20

How to Improve Performance

seconds cycles seconds
= X

program program cycle

So, to improve performance (everything else being equal) you can

either (increase or decrease?)

the # of required cycles for a program, or

the clock cycle time or, said another way,

the clock rate.

ECE369

21

How many cycles are required for a program?

« Could assume that number of cycles equals number of instructions

1st instruction
2nd instruction
3rd instruction

4th
5th
6th

time

\4

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

ECE369 2 2

Different numbers of cycles for different instructions

time

 Multiplication takes more time than addition
 Floating point operations take longer than integer ones

« Accessing memory takes more time than accessing registers

e Important point: changing the cycle time often changes the number of
cycles required for various instructions (more later)

ECE369

23

Example

Our favorite program runs in 10 seconds on computer A, which has a

4 GHz. clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer can use
new (or perhaps more expensive) technology to substantially increase the
clock rate, but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many clock cycles as
machine A for the same program. What clock rate should we tell the
designer to target?"'

Don't Panic, can easily work this out from basic principles

ECE369 24

Example

e Our favorite program runs in 10
seconds on computer A, which has
a4 GHz. clock. We are trying to
help a computer designer build a
new machine B, that will run this
program in 6 seconds. The
designer can use new (or perhaps
more expensive) technology to
substantially increase the clock
rate, but has informed us that this
increase will affect the rest of the
CPU design, causing machine B to
require 1.2 times as many clock
cycles as machine A for the same
program. What clock rate should
we tell the designer to target?*"

6 seconds =

seconds cycles seconds
= X

program program cycle

10 seconds = CPU clock cycles,

9 cycles

410
secand

9 cycles
second

CPU clock cyclesy = 10 seconds x 4 X 10 = 40 % 10 cycles

1.2 »x CPU clock cycles,,

CPU timey= Clock ratey

1.2 % 40 x ll}gc}fcles

1.2 % 40 % 10°cycles

Clock rateg =

6 seconds

Clock rateg

I
_ 8x10 LYL[E';'.-:SGHE

second

ECE369

25

Now we understand cycles

« A given program will require
— some number of instructions (machine instructions)
— some number of cycles
— some number of seconds
« We have a vocabulary that relates these quantities:
— cycle time (seconds per cycle)
— clock rate (cycles per second)

— CPI (cycles per instruction)

a floating point intensive application might have a higher CPI

— MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

ECE369 2 6

Back to the Same Formula, CPI (Cycles/Instruction)

seconds cycles seconds
= X

program program cycle

Seconds _ Instructions % Clock cycles Seconds
Program Program Instruction Clock cycle

Time =

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time that offsets the improvement in instruction count. Simi-
larly, because CPI depends on type of instructions executed, the code that
executes the fewest number of instructions may not be the fastest.

———

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

ECE369 2 7

CPI Example

« Suppose we have two
implementations of the same
instruction set
architecture (ISA).

For some program,

Machine A has a clock cycle time
of 250 ps and a CPI of 2.0
Machine B has a clock cycle time
of 500 ps and a CPIl of 1.2

What machine is faster for this
program, and by how much?

CPU performance ,

CPU performanceg

seconds cycles seconds
= X

program program cycle

CPU clock cycles, = Ix 2.0
CPU clock cyclesy = Ix 1.2
CPU time, = CPU clock cycles, x Clock cycle time,

= [X2.0%250 ps = 500 x [ps

CPU timeg = X 1.2X 500 ps = 600X I ps

Execution timeyg _ 600 x I ps _ 19

Execution time, 500 X[ps

ECE369 2 8

Let’s Complicate Things A Little bit...

A compiler designer is trying to
decide between two code
sequences for a particular
machine. Based on the hardware
implementation, there are three
different classes of instructions:
Class A, Class B, and Class C, and
they require one, two, and three
cycles (respectively).

Which sequence will be faster? How much?

seconds _ cycles ><seconds
program program cycle

CPU clock cycles = Z(CPLXQ)

=1

CPU clock cycles, = (2x1)+(1X2)+(2x3) = 24246 = 10 cycles

CPU clock cycles, = (4x1)+(1x2)+(1x3) = 4+2+43 = 9 cycles

The first code sequence has 5
instructions: 2of A, 10of B,and 2 of C

The second sequence has 6 instructions:
4 of A,10ofB,and 1 of C.

What is the CPI for each sequence?

CPU clock cycles

CPI = -
Instruction count
CPU clock cvycles
CPI, = ereyees _ 10 _
Instruction count, 5
. CPU clock cycles, 9
'(_,1:’12 — = - = 1.5

Instruction count, 6

ECE369

29

Scary Stuff

Op Freqguency Cycle Count
ALU 43% 1
Load 21% 1
Store 12% 2
Branch 24% 2

Let’s say we were able to reduce the cycle count for
“Store” operations to 1 with a cost of slowing our
clock by15%. Is this new design feasible?

ECE369 30

Example(Contd.)

(ZCPIi x 'C‘j n o
CPIoriginaI = = = ZCPIi X(i j

~ Instruction _Count < Instruction _ Count

Old CPI =0.43 +0.21 + 0.12x2 + 0.24x2 = 1.38
New CPl1 =0.43+0.21 +0.12 +0.24x2 = 1.24
Speed up = old time/new time
= (ICx oldCPI x T)/(IC x newCPI x 1.15T)
=0.97

so, don't make this change.

ECE369 3 1

Component Analysis

Affects what?

Algorithm

Instruction count,
possibly CPI

The algorithm determines the number of source program
instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the
algorithm uses more floating-point operations, it will tend to
have a higher CPI.

Programming
language

Instruction count,
CPI

The programming language certainly affects the instruction
count, since statements in the language are translated to
processor instructions, which determine instruction count. The
language may also affect the CPl because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher-CPI
instructions.

Compiler

Instruction count,
CPI

The efficiency of thb compiler affects both the instruction count
and average cycles per instruction, since the compiler
determines the translation of the source language instructions
into computer instructions. The compiler's role can be very
complex and affect the CPI in complex ways.

Instruction set
architecture

Instruction count,
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU
performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

ECE369

32

What is MIPS?

million instructions per sec-

ond (MIPS) A measurement of

yrogram execution speed based e —— -

irn 1:5{16 number of mi}llinns of MIPS = Lnstruction count
instructions. MIPS is computed

as the instruction count divided

by the product of the execution

time and 10°,

Execution time » 10°

e Instruction execution rate => higher is better

 Issues:
— Can not compare processors with different instruction sets

— Varies between programs on the same processor
— Can vary inversely with the performance... ?

ECE369 33

MIPS Example

-
1 2 3
_(5+1+1)x107

Instruction counts (in billions) MIPS, = - = 2800
2.5x10

MIPS = Instn_lctm.n count
Execution time > 10°

CPI

for each instruction class
cunron [T 1| - |
Compiler 1 5 1 1 2 3.75(30) x 10° T
Compiler 2 10 1 1 T
Assume that the computer’s clock rate is 4 GHz. Which code sequence will
execute faster according to MIPS? According to execution time?
L CPU clock cycles 9
Execution time = , - Execution time, = 12210 _ 3 5 seconds
Clock rate ! 1% 10°
- II‘ L 15 % 10° =
CPU clock cycles = Z(-CPIEK Ci) Execution time, = 5 = 3.75 seconds
4 %10

i=1

CPUclockcycles;, = (5x1+1x2+1x3)x10°= 10x10°
CPU clock cycles, = (10x1+1x24+1x3)x10° = 15x107

ECE369 34

Benchmarks

« Performance best determined by running a real application
— Use programs typical of expected workload
— Or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics, etc.

« Small benchmarks
— nice for architects and designers
— easy to standardize
— can be abused

« SPEC (System Performance Evaluation Cooperative)
— companies have agreed on a set of real program and inputs
— valuable indicator of performance (and compiler technology)
— can still be abused

ECE369

35

Benchmark Games

An embarrassed Intel Corp. acknowledged Friday that a bug in a
software program known as a compiler had led the company to
overstate the speed of its microprocessor chips on an industry
benchmark by 10 percent. However, industry analysts said the
coding error...was a sad commentary on a common industry
practice of “cheating” on standardized performance tests...The error
was pointed out to Intel two days ago by a competitor, Motorola
...came in atest known as SPECint92...Intel acknowledged that it
had “optimized” its compiler to improve its test scores. The
company had also said that it did not like the practice but felt to
compelled to make the optimizations because its competitors were
doing the same thing...At the heart of Intel’s problem is the practice
of “tuning” compiler programs to recognize certain computing
problems in the test and then substituting special handwritten
pieces of code...

Saturday, January 6, 1996 New York Times

ECE369

36

SPEC CPU2000

intogor benchmarcs
oo [Doscriptin | Name [Twe

gzip Compression wupwlze |Quantum chromodynamloes

VI FPGA clrcult placemant and routing, | swim Shallow water modal

go Tha Gnu © compllar mgrid Muttigrid solvier In 2-0 potantal flald

mct Ccomblnatoral optimization applu Parabolle /ellptic partlal differantlal equation

orarty Chass program mesa Threg-dimensional graphlcs lbrary

parser |Womr prooessing program galgal compuUtational fluld dynamlos

aon Computar visuallzation art Image recognition using neural networks

peribmk | pen appllcation equake | Selsmic wave propagation simulation

gap Group thaory, Interpretar facerac | Imags recognitlon of faces

vortex | Objectonantad database ammp computational chemlstry

bzip2 Compression lucas Primallty testing

twolf Place and rote simulgtor fma3d | Crash simulation using fnita-slament mathod
sixtrack | High-enargy nuclaar phiysles accalarator dasign
apsi Mateorclogy: pollutant distribution

FIGURE 4.5 The SPEC CPLZO0 boenchmarks. The 12 integer benchmarks in the lef half of the
table are written in < and T4+, while the fleating-point benchmarks in the right half are written m Fortran
(77 or 90} and C. For more information on SPEC and on the SPEC benchmarks, see wwwspec.org. The
SFEC CPU benchmarks use wall dock time as the metric, but because there is little 170, they measure CFLU
performance.

ECE369

Remember

Performance is specific to a particular program

Total execution time is a consistent summary of performance

For a given architecture performance increases come from:

increases in clock rate (without adverse CPI affects)
Improvements in processor organization that lower CPI
compiler enhancements that lower CPIl and/or instruction count
Algorithm/Language choices that affect instruction count

Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

ECE369

38

Problems with Benchmarking

« Hard to evaluate real benchmarks:
— Machine not built yet, simulators too slow
— Benchmarks not ported
— Compilers not ready

Benchmark performance is composition of hardware and software
(program, input, compiler, OS) performance, which must all be
specified

ECE369 39

Performance Measurement Overview

CPUtime = CPUclock _cycles for the pogramxClock Cycle Time

CPUtIme — CPUclock _cycles _ for _the _ pogram
Clock _ Rate

CPUclock _cycles for the pogram
IC

CPI =

CPUtime= ICxCPIxClock_Cycle Time

. IC xCPI
CPUtime = a
Clock _ Rate
CPUtIme — Seconds _ Instructions y ClcokCycles = Seconds

= X
Program Program Instruction ClockCycle

ECE369

Performance Measurement Overview

n
CPU clock _cycles for _the program — Z CPI i X IC,
i=1

CPUtime = (Z CPI. x IC, j x Clock _Cycle _Time
i=1

[ZH:CPIi x ICij

i=1

overall _CPI = =) CPI, x(IC,

Instruction _Count ‘3 Instruction _ Count

ECE369

|

41

Exercise

Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%

CPIl of FPSOQR =20

Assume that the two design alternatives are:
a) to reduce the CPI of FPSQR to 2 or

b) to reduce the average CPI of all FP operations to 2.

Compare these alternatives.

ECE369

42

Suppose we have made the following measurements
 Frequency of FP operations = 25%

SO I utl on « Average CPI of FP operations = 4.0
 Average CPI of other instructions = 1.33
« Frequency of FPSQR = 2%
- CPIl of FPSQR = 20
a) to reduce the CPIl of FPSQR to 2 or
n b) to reduce the average CPI of all FP operations to 2
(Z CPI, x |Cij
— n IC
CPI original I . = ZCPI i X . I
’ Instruction _Count 43 Instruction _ Count

=4x25% +1.33 x /5% =2.0

CP ISaved_on_FPSQR — Z%X (CP IoIdFPSQR_ CP InewFPSQP) — Z%X (20_ 2) — 036

CP IoveraII_ for_new FPSQR — CP Ioriginal -CP ISaved_on_ FPSQR — 2—-0.36=1.64

CPI . =75%x1.33+25% x2.0=1.5

overall _ for _new _

CPUTIMe i 1C xClockCyclex CPI i CPligina 2.00
SpeedupFP = _ = = = =1.33
CPUTime, ., IC x ClockCycle xCPI CPI .., 1.5

ECE369 43

Where are we now?

« Chapter 4 : Performance Issues

« Chapter 1: For you to read

* Instruction Set Architecture is coming up
— But, first cover basics

« ALU and ISA relationship

e Some details in ALU

« Chapter 3
« Chapter 2

ECE369

44

Amdahl's Law

« The performance enhancement of an improvement is limited by how
much the improved feature is used. In other words: Don't expect an
enhancement proportional to how much you enhanced something.

Amdahl’s law: Execution time after improvement
_ (Execution time affected by improvement
\ Amount of improvement

+ Execution time unaffected '|

« Example:

"Suppose a program runs in 100 seconds on a machine, with
multiply operations responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if we want
the program to run 4 times faster?"

How about making it 5 times faster?

ECE369 45

Amdahl’s Law
1. Speed up =4
2. Old execution time = 100
3. New execution time = 100/4 = 25
4. 1f 80 seconds is used by the affected part =>
5. Unaffected part = 100-80 = 20 sec

6. Execution time new = Execution time unaffected +
Execution time affected / Improvement

7. 25= 20 + 80/Improvement

8. Improvement = 16

ECE369

46

Example: Speed up using parallel processors

Suppose an application is “almost all” parallel: 90%.
What is the speedup using 10, 100, and 1000 processors?

Amdahl’s law: Execution time after improvement
_ (Execution time atfected by improvement
\ Amount of improvement

+ Execution time unaftected ':

new time = old time * 10% + (old time * 90%) / 10
Speed up (P=10) = old time / new time

Speedup (P=10) = 5.3

Speedup (P=100) =9.1

Speedup (P =1000)=9.9
ECE369 47

Amdahl’s Law Overview

Execution time before improvement
Execution time after improvement

Speedup =

Execution time affected by improvement

- + Execution time unaffected
Amount of improvement

Execution ime affer improvement =

= Execution time affected + Amount of improvement x Execution time unaffected
Amount of improvement

f1is the fraction affected
_ Execution time before improvement x f
Amount of improvement

+ Execution time before improvement x (1 - f)

= [,_j +(1- j)J x Execution time before improvement
Amount of improvement

Execution time before improvement

Speedup =
[.,f +(1- DJ x Execution time before improvement
Amount of improvement '
Speedup = - 1
[L+ (1-p)
Amount of improvement ECE369

48

Example

e Suppose we are considering an enhancement that
runs 10times faster than the original machine but is
only usable 40% of the time. What is the overall
speedup gained by incorporating the enhancement?

Speedup =
peedd] f : W

L - +(1- J
Amount of improvement :

Speedup = 02 1 ~ 1.56
——+ 0.6

10

ECE369 49

Example

Implementations of floating point square root vary significantly in
performance. Suppose FP square root (FPSQR) is responsible for
20% of the execution time of a critical benchmark on am machine,
One proposal is to add FPSQR hardware that will speed up this
operation by a factor of 10. The other alternative is just to try to make
all FP instructions run faster; FP instructions are responsible for a
total of 50% of the execution time. The design team believes that they
can make all FP instructions run two times faster with the same effort
as required for the fast square root. Compare those two design
alternatives.

1
Speedup rpsor = 07 ~1.22
—+(1-0.2)
10
1
SpeedupFP = G ~1.33
——+(1-0.5)
10

ECE369

50

Hardware/Software Tradeoffs

 Which operations are directly supported in “hardware” and which are
synthesized in software?

« How much hardware should you employ to speed up certain functions?

Hardware Software
Advantages Speed, Flexibility,
Consistency easier/faster design

lower cost of errors

Disadvantages Cost
No flexibility Slowness

ECE369

	ECE369: Fundamentals of Computer Architecture
	General Policies, Tips
	Fun Stuff…
	Announcements
	How to survive in ece369 ?
	Objective
	Chapter 1
	Introduction
	Why learn this stuff?
	What is a computer?
	Abstraction
	Instruction Set Architecture
	Sneak Peak (Lecture 18)
	Chapter 4
	Performance
	Computer Performance: TIME, TIME, TIME
	Execution Time
	Book's Definition of Performance
	Clock Cycles
	How to Improve Performance
	How many cycles are required for a program?
	Different numbers of cycles for different instructions
	Example
	Example
	Now we understand cycles
	Back to the Same Formula, CPI (Cycles/Instruction)
	CPI Example
	Let’s Complicate Things A Little bit…
	Scary Stuff
	Example(Contd.)
	Component Analysis
	What is MIPS?
	MIPS Example
	Benchmarks
	Benchmark Games
	SPEC CPU2000
	Remember
	Problems with Benchmarking
	Performance Measurement Overview
	Performance Measurement Overview
	Exercise
	Solution
	Where are we now?
	Amdahl's Law
	Amdahl’s Law
	Example: Speed up using parallel processors
	Amdahl’s Law Overview
	Example
	Example
	Hardware/Software Tradeoffs

