
1ECE369

ECE369: Fundamentals of Computer Architecture

ECE 369
MWF 10:00 AM - 10:50 AM in HARV-302

Instructor Teaching Assistant

Name: Ali Akoglu Chad Rossmeisl

Office: ECE 356-B

Phone: (520) 626-5149 TBA

Email: akoglu@ece.arizona.edu rossmeis@email.arizona.edu

Office
Hours:

Mondays 11:00 AM – 12:00
Wednesdays 3:30- 4:30 or
by appointment

Tuesdays 9:00 AM - 11:00 AM,
Thursdays 2:00PM- 3:30 PM
Fridays 10:00 AM-11:30AM, or
by appointment

2ECE369

General Policies, Tips

• Computer Organization and Design:
The Hardware/Software Interface, Third Edition, Revised Printing

• Prerequisite: ECE274 & Programming in C
• 8 to 12 assignments, 2 mid-terms, final project, final comprehensive exam
• NO LATE ASSIGNMENTS
• Make-ups may be arranged prior to the scheduled activity.
• Inquiries about graded material => within 3 days of receiving a grade.
• You are encouraged to discuss the assignment specifications with your

instructor, your teaching assistant, and your fellow students. However, anything
you submit for grading must be unique and should NOT be a duplicate of
another source.

• Read before the class
• Participate and ask questions
• Manage your time
• Start working on assignments early

3ECE369

Fun Stuff…

Distribution of Components Grades Scale

Component Percentage Percentage Grade

Assignments 15 90-100% A

Midterm-I 20 80-89% B

Midterm-II 20 70-79% C

Project 15 60-69% D

Final exam 30 Below 60% E

4ECE369

Announcements

• ECE250 LAB
– TA lab hours, office hours, etc.

• Assignments & Project
– Pairs only !!!
– Who is my partner?

• Assignment-0 Due August 29th

• Lecture notes on the web
– http://ece.arizona.edu/~ece369/

5ECE369

How to survive in ece369 ?

• Readings
– General principles and historical perspectives

• Assignments
– Apply the knowledge

• Project
– Hands on practice
– Xilinx ISE Design Tool
– Verilog

6ECE369

Objective

• Understand “how computer works”

• Appreciate the design tradeoffs

• Talk/Discuss/Express/Explain/Articulate/…..
at ALL LEVELS

7ECE369

Chapter 1

8ECE369

Introduction

• This course is all about how computers work
• But what do we mean by a computer?

– Different types: desktop, servers, embedded devices
– Different uses: automobiles, graphics, finance, genomics…
– Different manufacturers: Intel, Apple, IBM, Microsoft, Sun…
– Different underlying technologies and different costs!

• Analogy: Consider a course on “automotive vehicles”
– Many similarities from vehicle to vehicle (e.g., wheels)
– Huge differences from vehicle to vehicle (e.g., gas vs. electric)

9ECE369

Why learn this stuff?

• You want to call yourself a “computer engineer”
• You want to build software people use (need performance)
• You need to make a purchasing decision or offer “expert” advice

• Both Hardware and Software affect performance:
– Algorithm determines number of source-level statements
– Language/Compiler/Architecture determine machine instructions

(Chapter 2 and 3)
– Processor/Memory determine how fast instructions are executed

(Chapter 5, 6, and 7)

• Assessing and Understanding Performance in Chapter 4

10ECE369

What is a computer?

• Components:
– input (mouse, keyboard)
– output (display, printer)
– memory (disk drives, DRAM, SRAM, CD)
– network

• Our primary focus: the processor (datapath and control)
– implemented using millions of transistors
– Impossible to understand by looking at each transistor
– We need...

11ECE369

Abstraction

• Delving into the depths
reveals more information

• An abstraction omits unneeded
detail,
helps us cope with complexity

What are some of the details that
appear in these familiar
abstractions?

12ECE369

Instruction Set Architecture

• A very important abstraction
– interface between hardware and low-level software
– standardizes instructions, machine language bit patterns, etc.
– advantage: different implementations of the same architecture
– disadvantage: sometimes prevents using new innovations

• Modern instruction set architectures:
– IA-32, PowerPC, MIPS, SPARC, ARM, and others

13ECE369

Sneak Peak (Lecture 18)

14ECE369

Chapter 4

15ECE369

• Measure, Report, and Summarize
• Make intelligent choices
• See through the marketing hype
• Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Performance

16ECE369

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

•How much faster is the Concorde compared to the 747?

•How much bigger is the 747 than the Douglas DC-8?

17ECE369

• Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

• If we upgrade a machine with a new processor what do we increase?

• If we add a new machine to the lab what do we increase?

Computer Performance: TIME, TIME, TIME

18ECE369

• Elapsed Time
– counts everything (disk and memory accesses, I/O , etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– doesn't count I/O or time spent running other programs
– can be broken up into system time, and user time

• Our focus: user CPU time
– time spent executing the lines of code that are "in" our program

Execution Time

19ECE369

• For some program running on machine X,

PerformanceX = 1 / Execution timeX

• "X is n times faster than Y"

PerformanceX / PerformanceY = n

• Problem:
– machine A runs a program in 20 seconds
– machine B runs the same program in 25 seconds

Book's Definition of Performance

20ECE369

Clock Cycles

• Instead of reporting execution time in seconds, we often use cycles

• Clock “ticks” indicate when to start activities (one abstraction):

• cycle time = time between ticks = seconds per cycle
• clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec)

A 4 Ghz. clock has a cycle time

time

seconds
program

=
cycles

program
×

seconds
cycle

(ps) spicosecond 2501210
 9104

1 =×
×

21ECE369

So, to improve performance (everything else being equal) you can

either (increase or decrease?)

________ the # of required cycles for a program, or

________ the clock cycle time or, said another way,

________ the clock rate.

How to Improve Performance

seconds
program

=
cycles

program
×

seconds
cycle

22ECE369

• Could assume that number of cycles equals number of instructions

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

time

1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles are required for a program?

23ECE369

• Multiplication takes more time than addition

• Floating point operations take longer than integer ones

• Accessing memory takes more time than accessing registers

• Important point: changing the cycle time often changes the number of
cycles required for various instructions (more later)

time

Different numbers of cycles for different instructions

24ECE369

• Our favorite program runs in 10 seconds on computer A, which has a
4 GHz. clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer can use
new (or perhaps more expensive) technology to substantially increase the
clock rate, but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many clock cycles as
machine A for the same program. What clock rate should we tell the
designer to target?"

• Don't Panic, can easily work this out from basic principles

Example

25ECE369

Example

• Our favorite program runs in 10
seconds on computer A, which has
a 4 GHz. clock. We are trying to
help a computer designer build a
new machine B, that will run this
program in 6 seconds. The
designer can use new (or perhaps
more expensive) technology to
substantially increase the clock
rate, but has informed us that this
increase will affect the rest of the
CPU design, causing machine B to
require 1.2 times as many clock
cycles as machine A for the same
program. What clock rate should
we tell the designer to target?"

seconds
program

=
cycles

program
×

seconds
cycle

26ECE369

• A given program will require

– some number of instructions (machine instructions)

– some number of cycles

– some number of seconds

• We have a vocabulary that relates these quantities:

– cycle time (seconds per cycle)

– clock rate (cycles per second)

– CPI (cycles per instruction)
a floating point intensive application might have a higher CPI

– MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

Now we understand cycles

27ECE369

Back to the Same Formula, CPI (Cycles/Instruction)

seconds
program

=
cycles

program
×

seconds
cycle

28ECE369

CPI Example

• Suppose we have two
implementations of the same
instruction set
architecture (ISA).

For some program,

Machine A has a clock cycle time
of 250 ps and a CPI of 2.0
Machine B has a clock cycle time
of 500 ps and a CPI of 1.2

What machine is faster for this
program, and by how much?

seconds
program

=
cycles

program
×

seconds
cycle

29ECE369

Let’s Complicate Things A Little bit…

A compiler designer is trying to
decide between two code
sequences for a particular
machine. Based on the hardware
implementation, there are three
different classes of instructions:
Class A, Class B, and Class C, and
they require one, two, and three
cycles (respectively).

The first code sequence has 5
instructions: 2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions:
4 of A, 1 of B, and 1 of C.

What is the CPI for each sequence?

Which sequence will be faster? How much?

cycle
seconds

program
cycles

program
seconds

×=

30ECE369

Scary Stuff

Op Frequency Cycle Count

ALU 43% 1
Load 21% 1
Store 12% 2
Branch 24% 2

Let’s say we were able to reduce the cycle count for
“Store” operations to 1 with a cost of slowing our
clock by15%. Is this new design feasible?

31ECE369

Example(Contd.)

Old CPI = 0.43 + 0.21 + 0.12x2 + 0.24x2 = 1.38

New CPI = 0.43 + 0.21 + 0.12 + 0.24x2 = 1.24

Speed up = old time/new time
= (ICx oldCPI x T)/(IC x newCPI x 1.15T)
=0.97

so, don't make this change.

∑
∑

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

⎟
⎠

⎞
⎜
⎝

⎛
×

=
n

i

i
i

n

i
ii

original CountnInstructio
IC

CPI
CountnInstructio

ICCPI
CPI

1

1

__

32ECE369

Component Analysis

33ECE369

What is MIPS?

• Instruction execution rate => higher is better
• Issues:

– Can not compare processors with different instruction sets
– Varies between programs on the same processor
– Can vary inversely with the performance… ?

34ECE369

MIPS Example

35ECE369

• Performance best determined by running a real application
– Use programs typical of expected workload
– Or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics, etc.
• Small benchmarks

– nice for architects and designers
– easy to standardize
– can be abused

• SPEC (System Performance Evaluation Cooperative)
– companies have agreed on a set of real program and inputs
– valuable indicator of performance (and compiler technology)
– can still be abused

Benchmarks

36ECE369

Benchmark Games

• An embarrassed Intel Corp. acknowledged Friday that a bug in a
software program known as a compiler had led the company to
overstate the speed of its microprocessor chips on an industry
benchmark by 10 percent. However, industry analysts said the
coding error…was a sad commentary on a common industry
practice of “cheating” on standardized performance tests…The error
was pointed out to Intel two days ago by a competitor, Motorola
…came in a test known as SPECint92…Intel acknowledged that it
had “optimized” its compiler to improve its test scores. The
company had also said that it did not like the practice but felt to
compelled to make the optimizations because its competitors were
doing the same thing…At the heart of Intel’s problem is the practice
of “tuning” compiler programs to recognize certain computing
problems in the test and then substituting special handwritten
pieces of code…

Saturday, January 6, 1996 New York Times

37ECE369

SPEC CPU2000

38ECE369

• Performance is specific to a particular program
– Total execution time is a consistent summary of performance

• For a given architecture performance increases come from:
– increases in clock rate (without adverse CPI affects)
– improvements in processor organization that lower CPI
– compiler enhancements that lower CPI and/or instruction count
– Algorithm/Language choices that affect instruction count

• Pitfall: expecting improvement in one aspect of a machine’s
performance to affect the total performance

Remember

39ECE369

Problems with Benchmarking

• Hard to evaluate real benchmarks:
– Machine not built yet, simulators too slow
– Benchmarks not ported
– Compilers not ready

Benchmark performance is composition of hardware and software
(program, input, compiler, OS) performance, which must all be
specified

40ECE369

Performance Measurement Overview

ClockCycle
Seconds

nInstructio
sClcokCycle

ogram
nsInstructio

ogram
SecondsCPUtime ××==

PrPr

TimeCycleClockpogramtheforcyclesCPUclockCPUtime ______ ×=

RateClock
pogramtheforcyclesCPUclockCPUtime

_

=

IC
pogramtheforcyclesCPUclockCPI ____

=

TimeCycleClockCPIICCPUtime __××=

RateClock
CPIICCPUtime
_

×
=

41ECE369

Performance Measurement Overview

TimeCycleClockICCPICPUtime
n

i
ii __

1

×⎟
⎠

⎞
⎜
⎝

⎛
×= ∑

=

∑
∑

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

⎟
⎠

⎞
⎜
⎝

⎛
×

=
n

i

i
i

n

i
ii

CountnInstructio
IC

CPI
CountnInstructio

ICCPI
CPIoverall

1

1

__
_

∑
=

×=
n

i
iiprogramtheforcyclesclock ICCPICPU

1

42ECE369

Exercise

Suppose we have made the following measurements:
• Frequency of FP operations = 25%
• Average CPI of FP operations = 4.0
• Average CPI of other instructions = 1.33
• Frequency of FPSQR = 2%
• CPI of FPSQR = 20

Assume that the two design alternatives are:
a) to reduce the CPI of FPSQR to 2 or
b) to reduce the average CPI of all FP operations to 2.

Compare these alternatives.

43ECE369

Solution

∑
∑

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

⎟
⎠

⎞
⎜
⎝

⎛
×

=
n

i

i
i

n

i
ii

original CountnInstructio
IC

CPI
CountnInstructio

ICCPI
CPI

1

1

__

0.2%7533.1%254 =×+×=

36.0)220(%2)(%2__ =−×=−×= newFPSQRoldFPSQRFPSQRonSaved CPICPICPI

64.136.02_____ =−=−= FPSQRonSavedoriginalFPSQRnewforoverall CPICPICPI

5.10.2%2533.1%75___ =×+×=FPnewforoverallCPI

33.1
5.1
00.2

===
××

××
==

new

original

new

original

new

original

CPI
CPI

CPIClockCycleIC
CPIClockCycleIC

CPUTime
CPUTime

SpeedupFP

44ECE369

Where are we now?

• Chapter 4 : Performance Issues
• Chapter 1: For you to read
• Instruction Set Architecture is coming up

– But, first cover basics

• ALU and ISA relationship
• Some details in ALU

• Chapter 3
• Chapter 2

45ECE369

Amdahl's Law

•• The performance enhancement of an improvement is limited by how The performance enhancement of an improvement is limited by how
much the improved feature is used. In other words: Donmuch the improved feature is used. In other words: Don’’t expect an t expect an
enhancement proportional to how much you enhanced something.enhancement proportional to how much you enhanced something.

• Example:

"Suppose a program runs in 100 seconds on a machine, with
multiply operations responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if we want
the program to run 4 times faster?"

How about making it 5 times faster?

46ECE369

Amdahl’s Law

2. Old execution time = 100

3. New execution time = 100/4 = 25

4. If 80 seconds is used by the affected part =>

5. Unaffected part = 100-80 = 20 sec

6. Execution time new = Execution time unaffected +
Execution time affected / Improvement

7. 25= 20 + 80/Improvement

8. Improvement = 16

1. Speed up = 4

47ECE369

Example: Speed up using parallel processors

Suppose an application is “almost all” parallel: 90%.
What is the speedup using 10, 100, and 1000 processors?

new time = old time * 10% + (old time * 90%) / 10

Speed up (P=10) = old time / new time

Speedup (P=10) = 5.3

Speedup (P = 100) = 9.1

Speedup (P = 1000) = 9.9

48ECE369

Amdahl’s Law Overview

49ECE369

Example

• Suppose we are considering an enhancement that
runs 10times faster than the original machine but is
only usable 40% of the time. What is the overall
speedup gained by incorporating the enhancement?

56.1
6.0

10
4.0

1
≅

+
=Speedup

50ECE369

Example

• Implementations of floating point square root vary significantly in
performance. Suppose FP square root (FPSQR) is responsible for
20% of the execution time of a critical benchmark on am machine,
One proposal is to add FPSQR hardware that will speed up this
operation by a factor of 10. The other alternative is just to try to make
all FP instructions run faster; FP instructions are responsible for a
total of 50% of the execution time. The design team believes that they
can make all FP instructions run two times faster with the same effort
as required for the fast square root. Compare those two design
alternatives.

22.1
)2.01(

10
2.0

1
≅

−+
=FPSQRSpeedup

33.1
)5.01(

10
5.0

1
≅

−+
=SpeedupFP

51ECE369

Hardware/Software Tradeoffs

• Which operations are directly supported in “hardware” and which are
synthesized in software?

• How much hardware should you employ to speed up certain functions?

Hardware Software
Advantages Speed, Flexibility,

Consistency easier/faster design
lower cost of errors

Disadvantages Cost
No flexibility Slowness

	ECE369: Fundamentals of Computer Architecture
	General Policies, Tips
	Fun Stuff…
	Announcements
	How to survive in ece369 ?
	Objective
	Chapter 1
	Introduction
	Why learn this stuff?
	What is a computer?
	Abstraction
	Instruction Set Architecture
	Sneak Peak (Lecture 18)
	Chapter 4
	Performance
	Computer Performance: TIME, TIME, TIME
	Execution Time
	Book's Definition of Performance
	Clock Cycles
	How to Improve Performance
	How many cycles are required for a program?
	Different numbers of cycles for different instructions
	Example
	Example
	Now we understand cycles
	Back to the Same Formula, CPI (Cycles/Instruction)
	CPI Example
	Let’s Complicate Things A Little bit…
	Scary Stuff
	Example(Contd.)
	Component Analysis
	What is MIPS?
	MIPS Example
	Benchmarks
	Benchmark Games
	SPEC CPU2000
	Remember
	Problems with Benchmarking
	Performance Measurement Overview
	Performance Measurement Overview
	Exercise
	Solution
	Where are we now?
	Amdahl's Law
	Amdahl’s Law
	Example: Speed up using parallel processors
	Amdahl’s Law Overview
	Example
	Example
	Hardware/Software Tradeoffs

