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ABSTRACT
We address the problem of preserving contextual informa-
tion privacy in wireless sensor networks (WSNs). We con-
sider an adversarial network of colluding eavesdroppers that
are placed at unknown locations. Eavesdroppers use com-
munication attributes of interest such as packet sizes, inter-
packet timings, and unencrypted headers to infer contextual
information, including the time and location of events re-
ported by sensors, the sink’s position, and the event type.
We propose a traffic normalization technique that employs
a minimum backbone set of sensors to decorrelate the ob-
servable traffic patterns from the real ones. Compared to
previous works, our method significantly reduces the com-
munication overhead for normalizing traffic patterns.

Categories and Subject Descriptors
C.2.0 [Computer - Communication Networks]: Gen-
eral - Security and Protection

Keywords
Eavesdropping, colluding adversaries, wireless sensor net-
works, algorithms, security

1. INTRODUCTION
Wireless communications are vulnerable to eavesdropping

by anyone equipped with a wireless receiver. When the
transmitted information is of sensitive nature, its privacy
is protected via cryptographic methods. However, encryp-
tion alone cannot prevent the leakage of contextual infor-
mation such as the location of communicating nodes, the
path between the source and the destination, or the time of
occurrence of a reported event. Passive eavesdroppers can
obtain contextual information by performing traffic analy-
sis using low-level packet identifiers such as packet size and
inter-packet timings, even when the contents of the packet
remain hidden [4, 6, 9]. Moreover, this information can be
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used to launch intelligent attacks of selective and adaptive
nature that degrade network performance at low cost [10,13].

In this paper, we address the problem of preserving the pri-
vacy of contextual information in wireless communications.
Though we study this problem in the context of wireless
sensor networks (WSNs), our methods are applicable to any
static wireless multihop network. We consider an adver-
sary that deploys a network of colluding eavesdroppers at
unknown locations within the WSN. The eavesdropping de-
vices can be cheap passive sensors that form an out-of-band
collusion network [9, 14]. Eavesdroppers extract communi-
cation attributes of interest and centrally process them to
derive contextual information.

State-of-the art techniques for hiding contextual informa-
tion employ bogus transmissions to normalize the eaves-
dropped transmission patterns [9, 12, 14]. In these schemes,
sensors transmit according to a predefined distribution, ir-
respective of their real traffic profile. Transmissions of real
packets conform to the same distribution, thus defeating
traffic analysis techniques. However, when the locations of
the colluding eavesdroppers are unknown, privacy can be
achieved only if all sensors become sources of bogus traf-
fic [9, 12]. In our approach, we significantly reduce the
communication overhead by intelligently selecting the bogus
sources and loosely coordinating real packet transmissions.

Our Contributions: We propose a resource-efficient traf-
fic normalization scheme that protects contextual informa-
tion under colluding eavesdroppers. Our scheme achieves
perfect privacy while the number of bogus traffic sources
is reduced. We map the problem of reducing the bogus
traffic sources to the problem of partitioning the WSN into
minimum connected dominating sets (MCDSs). Due to the
problem complexity, we propose a distributed heuristic algo-
rithm that approximates the WSN partition to MCDSs. We
further propose a schedule assignment scheme that reduces
packet delay by loosely coordinating transmissions among
neighboring sensors.

The remainder of the paper is organized as follows. In
Section 2, we present related work. In Section 3, we state
our model assumptions. Section 4 presents our traffic nor-
malization scheme. In Section 5, we conduct a performance
evaluation and in Section 6, we conclude.

2. RELATED WORK
The problem of hiding contextual information in WSNs

has been studied under a local and a global adversary model.
Due to space limitations, we focus on the latter model, which
is most relevant to our work.



In [9], the authors proposed two traffic normalization meth-
ods based on the injection of bogus traffic; periodic collec-
tion and source simulation. In periodic collection, each sen-
sor generates bogus packets at a constant rate. To transmit
real data, sensors simply substitute dummy packets with
real ones. This method prevents colluding eavesdroppers
from determining the source of real traffic, the path to the
sink, and the sink location, at the expense of significant com-
munication overhead. Our methods achieve the same level
of privacy at a considerably lower communication overhead.
Source simulation reduces the communication overhead by
selecting a subset of sensors as bogus sources, that are chosen
to simulate the expected distribution of real events. How-
ever, the event distribution must be known apriori.

In [4], the authors proposed a traffic normalization scheme
that propagates dummy packets in a probabilistic fashion.
A sensor that overhears the transmission of a real packet,
forwards a dummy packet to its neighbors with some prob-
ability p. The packet is probabilistically flooded in a radius
of K hops from the bogus source. Under a global adversary,
if an eavesdropper happens to be close to the source or the
sink, their location can be inferred.

Besides their overhead, traffic normalization techniques
incur unavoidable delay. This is because transmissions of
real packets are delayed to conform to predefined transmis-
sion patterns. The authors in [12] reduced packet delay by
rushing the transmissions of real packets while delaying the
transmissions of follow-up dummy packets so that the long-
scale traffic statistics are maintained. This approach is not
effective when multiple packets need to be transmitted by
the same sensor. Moreover, the authors of [1] proved that
statistical analysis of the occurred short-long transmission
patterns can be used to identify real packets. To address
this vulnerability, the authors proposed the generation of
fake short-long patterns by introducing dummy events fol-
lowing packets related to real events.

In [11], the number of bogus traffic sources was reduced by
constructing a minimum connected dominating set (MCDS)
that covers the deployment area. Only the sensors that be-
long to the MCDS transmit bogus traffic. Sensors that are
not part of the MCDS, regulate their transmissions in order
to conform to the statistical traffic properties observed by an
eavesdropper. Since the eavesdropper’s location is unknown,
the set of possible eavesdropped rates is inferred via geomet-
ric analysis. The scheme in [11] does not address the case of
eavesdropper collusion. The method that we present in our
present work provides perfect privacy, even if eavesdroppers
collude and can eavesdrop on all network communications.

3. SYSTEM AND ADVERSARY MODELS
System Model: We consider a WSN consisting of a set of

sensors V. The WSN is organized as a multi-hop mesh topol-
ogy, which is defined by the sensor communication range and
the sensor positions. Sensors are synchronized to a common
time reference. Packets are assumed to be re-encrypted on
a per-hop basis to prevent eavesdroppers from identifying a
packet relayed over multiple hops [8]. Re-encryption is ap-
plied to all packet identifiers such as headers at the MAC
layer and the payload. Sensors are pre-loaded with secrets
that can be used to establish cryptographic keys. Finally,
contention management protocols are assumed to conform
to the traffic rate assigned to each sensor.

Adversary Model: We assume an unknown number of

colluding eavesdroppers to be deployed at unknown loca-
tions within the WSN. The set of eavesdroppers observes
communication attributes of interest such as the packet sizes,
inter-packet times, identity of transmitting nodes (obtained
through the unencrypted header fields, or through signal
processing techniques). These observations are collectively
processed by a central coordinator to extract contextual in-
formation. Because the number and positions of the eaves-
droppers are unknown, any portion of the WSN communi-
cations could be intercepted. In the extreme case, eaves-
droppers are able to intercept all packets transmitted in the
WSN. This global adversary model is realistic when eaves-
dropping devices are cheap sensors with similar capabilities
to legitimate sensors [4, 9, 12]. Finally, the adversary does
not launch active attacks (e.g., jamming, packet modifica-
tion and injection attacks), or compromise and control any
of the sensors in V.

4. RESOURCE-EFFICIENT TRAFFIC NOR-
MALIZATION

In this section, we develop a resource-efficient traffic nor-
malization scheme to prevent the leakage of contextual infor-
mation. Our scheme consists of two phases: network parti-
tion and schedule assignment. First, we motivate our design.

4.1 Design Motivation
Our design is motivated by the excessive communication

overhead of state-of-the-art traffic normalization methods.
Since the eavesdroppers’ locations are unknown, prior meth-
ods hide contextual information by normalizing the trans-
mission profiles of all sensors [4, 9, 12]. Moreover, to hide
the route to the sink and the sink’s location, transmissions
between neighboring nodes remain uncoordinated. Lack of
coordination can lead to the accumulation of packet delay
on a per-hop basis.

In our design, we represent the WSN as a graph G(V, E),
where V denotes the set of sensors, and E the links between
them. Set V is partitioned into disjoint subsets, denoted
by {D1,D2, . . .Dz}. Only one subset is active at any time
and active subsets are periodically rotated in a round-robin
fashion. Sensors of an active subset are responsible for nor-
malizing the eavesdropped traffic pattern and relaying real
packets to their respective destinations. The partition of V is
designed to form special types of subgraphs that satisfy the
following principles: (a) all sensors can transmit real traffic
without altering their transmission profile; (b) a subset can
deliver a packet to any destination; and (c) the number of
bogus traffic sources is minimized. Because only a subset
of sensors is active at any given time, the communication
overhead is drastically reduced.

To decrease the delay in forwarding real packets, we loosely
coordinate the sensor transmissions within each Dj , such
that the traffic patterns observed by any number of collud-
ing eavesdroppers remains unchanged. We now describe the
two phases in detail.

4.2 Phase I: Network Partition
In the first phase, we partition V to subsets {D1, . . . ,Dz}.

Every subset is active for a fixed time interval. The active
subsets are periodically rotated in a round-robin fashion.
Sensors of an active subset transmit dummy packets accord-
ing to a pre-assigned distribution. A sensor with real packets
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Figure 1: (a) A graph G(V, E) representing the WSN, (b) a DS generated during Stage 1, (c) an MCDS
approximation generated during Stage 2.

for transmission conforms to this distribution by replacing
dummy packets with real ones. Thus, transmission of real
packets does not alter the traffic patterns observed by eaves-
droppers. We reduce the problem of partitioning V, to the
problem of finding disjoint minimum connected dominating
sets (MCDSs) that span V. We now define the MCDS [7].

Minimum Connected Dominating Set: For a graph
G(V, E), a subset D ⊆ V is a dominating set (DS) if any
vertex u ∈ V either belongs to D, or is adjacent (within one
hop) to some vertex in D. If D induces a connected subgraph
on G, then D is a connected dominating set (CDS). If D
has the smallest possible cardinality, it forms a minimum
connected dominating set (MCDS).

The partition of V into disjoint MCDSs satisfies properties
(a)-(c). Property (a) is satisfied, as the set of MCDSs spans
V. Hence, each sensor belongs to one Dj , and is able to
transmit real traffic when Dj becomes active. By design,
the transmission profile of an active sensor is not altered
when real traffic substitutes bogus traffic. For property (b),
a CDS guarantees that any sensor in V will be either part of
Dj or within one hop from a sensor in Di. Moreover Dj is a
connected set. Hence, a real packet transmitted by a sensor
in Dj can be forwarded to any sensor in V using only Dj .
Finally, property (c) is satisfied by definition, as an MCDS
minimizes the number of active sensors.

A partition of V into disjoint MCDSs does not always
exist for arbitrary graph topologies. The number of dis-
joint MCDSs is bounded by the minimum vertex-cut size
of G.Moreover, determining a single MCDS for arbitrary
topologies is known to be an NP-complete problem [5]. In
the absence of an MCDS partition guarantee and of a poly-
nomial time algorithm for finding an MCDS, we relax the
MCDS partition requirement to allow sensors to be part of
more than one MCDSs. We denote the frequency of appear-
ance of a sensor v to any of the z MCDSs as f(v). We aim
at finding a set of MCDSs that covers V and balances be-
tween the frequency of appearance, number of MCDSs, and
MCDS size. We propose a distributed solution inspired by
the heuristic MCDS construction algorithm developed in [3].
Our algorithm computes a set of CDSs {D1, D2, . . . ,Dz},
that approximate the partition of V to MCDSs. We note
that the computation and communication overhead for par-
titioning V to z CDS is only incurred once during the net-
work initialization. The steps of our algorithm are as follows.

Algorithm 1: MCDS approximation– We generate a
Dj in two stages. We first obtain a DS, and later we expand
the DS to a connected graph approximating the MCDS.

For a sensor v ∈ V, let m(v) be a marker, which can take
the values WHITE, BLACK, or GRAY. Let Nv denote the
one-hop neighbors of v, δ(v) = |Nv| the degree of v, and
δ∗(v) the effective degree of v. Parameter δ∗(v) is defined as
the number of WHITE neighbors of v. Let also r(v) be the
rank of v, defined as the order that v changed its marker rel-
ative to a leader node. Finally, let b(v) denote the number
of higher-ranked BLACK neighbors of v and f(v) the fre-
quency of appearance of v in the CDSs generated thus far.
All nodes are initialized to m(v) = WHITE, δ∗(v) = δ(v),
b(v) = 0, f(v) = 0, and r(v) = 0. The marking process that
outputs a DS is as follows.

Stage 1: DS generation

Step 1: A randomly chosen leader v starts the process by
changing m(v) to BLACK. Node v becomes a “dominator”
and broadcasts m(v) = BLACK, r(v) = 0, and f(v) = 0.
Step 2: A sensor u with m(u) = WHITE receiving m(v) =
BLACK from v ∈ Nu is dominated by v. Node u sets
m(u) = GRAY, r(u) = r(v), and broadcasts m(u) and r(u).
Step 3: A WHITE sensor v getting m(u) = GRAY from
u ∈ Nv, decreases δ∗(v) by one, updates the rank to r(v) =
r(u)+1 if r(v) ≤ r(u), and broadcasts δ∗(v), r(v), and f(v).
Step 4: A sensor v changes m(v) to BLACK, if

v = arg maxu∈Nv∪{v}

{
δ∗(u)
δ∗max

× 1
f(u)+1

}
,

where δ∗max = maxu∈Nv∪{v} δ
∗(u). Node v becomes a “dom-

inator” and broadcasts its new marker value and rank.
Step 5: After receiving the transmission of a BLACK node,
a sensor v updates the value of b(v).
Step 6: The marking process is repeated until no sensors
are marked as WHITE (i.e., δ∗(v) = 0, ∀v ∈ V).

With the termination of Stage 1, all nodes are marked either
as BLACK or GRAY, with each GRAY node dominated
by a BLACK one. Therefore, the set of BLACK sensors
forms a DS. Figure 1(b) shows the DS generated for the
graph of Figure 1(a). Since initially f(v) = 0 for all sensors,
the marking process depends only on δ∗(v). In our example,
v20 becomes the leader and broadcasts m(v)=BLACK and
r(v) = 0. Nodes v12, v19, and v21 become GRAY and set
their rank to zero. In the next iteration, v3, v11, v16, and v18
are added to the DS and change their rank to one. Finally,
v5, v6, and v9 are added to the DS and set their rank to two.
The network is now partitioned to a set of star subgraphs,
where each star consists of a set of GRAY nodes dominated
by a BLACK node. The rank of each star increases with its
“distance” from the leader node. In Stage 2, we approximate



an MCDS by selecting GRAY nodes that connect the stars.
The process is as follows.

Stage 2: Approximation of the MCDS

Step 1: Every GRAY node v broadcasts b(v).
Step 2: Leader node v selects GRAY nodes u ∈ Nv with

u = arg max{Nv,r(v)=r(u)}

{
b(u)
bmax

× 1
f(u)+1

}
,

where bmax = max{u∈Nv,r(v)=r(u)} b(u) and b(u), bmax > 0.
Node u changes its marker to BLACK and its rank r(u) =
r(v) + 1. Ties are broken arbitrarily.
Step 3: A node w ∈ Nu with m(w) = BLACK and r(w) =
r(u) becomes dominated by u. Dominated nodes change
their rank to r(w) = r(u) + 1 and broadcast their new rank.
Any GRAY node v ∈ Nw overhearing a message from w
updates b(v) = b(v)− 1 and changes its rank to r(w).
Step 4: A GRAY node v overhearing a rank update message
from a BLACK node u with rank r(u) < r(v) changes its
dominating node to u and broadcasts r(u) and b(v).
Step 5: The process is iteratively repeated until all GRAY
nodes have b(v) = 0.
Step 6: If a BLACK node does not dominate at least one
other node it changes its marker to GRAY.

At the end of Stage 2, every GRAY node has b(v) = 0, i.e., all
BLACK nodes of Stage 1 are dominated. Moreover, BLACK
nodes are dominated by GRAY nodes of lower rank. Since
the process is initiated by the leader node, every BLACK
node dominated by the GRAY node gets connected to the
leader. This process terminates when all BLACK nodes are
dominated. Thus, the resulting subgraph is connected. That
is, the set D = {v : m(v) = BLACK, v ∈ V} forms a CDS.

Figure 1(c) depicts the CDS generated after Stage 2. In
Step 1, the leader node v20 selects GRAY node v12 (b(v12) >
b(v19), b(v21)) to connect to the star subgraphs dominated by
v3, v11, and v16. In Step 2, v12 becomes BLACK and broad-
casts m(v12) and r(v12) = 1. In Step 3, nodes v3, v11, and
v16 change their rank to two and broadcast their new rank.
Nodes v21 and v14 change b(v21) = b(v14) = 0 and broadcast
their new values. Moreover, v14 is now dominated by v12
since v12 has a lower rank than v3. In further iterations,
nodes v1 and v2 change to BLACK to connect v5, v6 and
v9, respectively and produce a CDS. In Step 6, the CDS is
pruned to eliminate the leaf BLACK nodes v6, v9, and v18.

In the last stage, the CDS generation process is repeated
to produce another CDS for the partition of V.

Stage 3: CDS Update

Step 1: Increment f(v) by one unit for all nodes in Dj .
Step 2: Repeat Stages 1 and 2 until f(v) > 0, ∀v ∈ V.

In Stages 1 and 2, a sensor v is added to the CDS according
to metrics,

δ∗(v)
δ∗max

× 1
f(v)+1

and b(v)
bmax

× 1
f(v)+1

,

respectively. These metrics are designed to balance between
the CDS size and the number of CDSs. By maximizing
δ∗(v)
δ∗max

, we minimize the CDS size in a greedy fashion. Nodes

that dominate the maximum fraction of their neighbors are

added to the DS. Similarly by maximizing b(v)
bmax

, nodes that
connect the largest fraction of star subgraphs are added to
the CDS. On the other hand, 1

f(v)+1
favors the selection of

nodes that have not been previously included in any CDS.
This metric reduces the number of CDSs needed to span V.

The size of each CDSs generated by Algorithm 1 approx-
imates the minimum DS by a factor of eight. Due to space
limitations, we provide an inform proof of this claim. We
first note that the DSs Dj generated in Stage 1 are minimal.
That is, if a node v ∈ Dj changes its color from BLACK
to WHITE or GRAY, Dj no longer forms a DS. This is due
to the fact that in Stage 1, a BLACK node only has GRAY
neighbors. Hence, a BLACK node that changed its color to
GRAY will not be dominated by any other BLACK node.
In [2], the authors proved that a minimal DS approximates
the minimum DS with an approximation factor of four. In
Stage 2, GRAY nodes change their color to BLACK to con-
nect BLACK nodes that belong to the DS. In the worst case
scenario, for each BLACK node of the DS, one GRAY node
must turn BLACK to connect it to a BLACK node of lower
rank (line network topology). Thus, the size of each CDS is
at most twice the size of the DS generated in Stage 1. There-
fore, the CDS generated by Algorithm 1 is upper-bounded
by a factor of eight times the size of the minimum DS.

4.3 Phase II: Schedule Assignment
In the section, we propose the Deterministic Assignment

Scheme (DAS) for reducing the end-to-end delay of real
packets under a fixed communication overhead budget.

In our scheme, time is divided into intervals I1, I2, . . . of
length T . Only one CDS is active at a given interval. We
assume T is sufficiently long to accommodate a number of
packets according to the given packet rate, and resolve any
contention between active sensors within the same collision
domain. The CDSs obtained by Algorithm 1 are periodically
activated in a round-robin fashion, allowing all sensors to
transmit real data. A CDS Dj is active in interval Ik, if
j = (k mod z) + 1. Sensors of an active Dj either transmit
dummy packets, or replace dummy packets with real ones.

4.3.1 Deterministic Assignment Scheme (DAS)
When sensor transmissions are uncoordinated, the packet

relay operation during one interval can be blocked if the next
hop completes its transmissions prior to the previous hop.
This can be illustrated in the CDS of Figure 1(c). Suppose
v3 wants to send a packet to v20 (sink). Assume the each
sensor randomly selects to transmit one packet within Ik.
If the transmission of v12 precedes that of v3, a real packet
p will be relayed one time (from v3 to v12) during Ik. On
the other hand, if v12’s transmission follows the transmission
from v3, p will be relayed twice during Ik, delivering p at v20.

In DAS, transmissions are coordinated to maximize the
number of relay operations per Ik. We label an active CDS
Dj as a tree rooted at the sink s. Packets from any sensor in
Dj are delivered to s using shortest path routing on the tree.
Hence, a packet originating from a sensor v located at depth
d(v) requires (d(v)− 1) relay operations until it is delivered
to s. We divide each Ik to subintervals {I1k , I2k , . . . , I`k} of
duration T

`
, where ` is the height of the tree. A sensor v

at depth d(v) is scheduled to transmit during subinterval

I
`−d(v)+1
k . Formally, DAS implements the following steps.

Algorithm 2: Deterministic Assignment Scheme (DAS)

Step 1: Dj is labeled as a tree rooted at the sink s.
Step 2: A sensor v located at depth d(v) is labeled with
idv = (d(v) mod `) + 1, where ` is the height of the tree.
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Figure 2: (a) Average CDS size, normalized over the WSN size, as a function of δ, (b) average number of
CDSs needed to span V as a function of δ, (c) empirical probability mass function of f .

Step 3: A sensor with idv is assigned to transmit one packet
in subinterval I`−idvk .

For the CDS Dj shown in Figure 1(c), suppose that v20
is the sink. We first label Dj as a tree rooted at v20. The
label id of each sensor is shown within the circle. Interval
Ik is divided into four subintervals (the depth of the tree is
` = 4). Sensor v5 (id5 = 4) is scheduled to transmit at I1k ,
sensors with idv = 3 are scheduled in I2k , and so on.

Note that the sink need not be part of every CDS. If s
does not belong to a CDS Dj , any sensor v ∈ Dj one-hop
away from the source can be selected as the tree root. Such
sensor is guaranteed to exist due to the CDS property.

Security Analysis: In DAS, the transmission patterns ob-
served by eavesdroppers are decorrelated from the real traffic
pattern. Thus DAS does not reveal the location and time of
occurrence of an event. For instance, suppose that a sensor
v ∈ Dj observed an event ε(loc, t) occurred at time t and
location loc. When Dj becomes active, v transmits packets
related to ε towards s. Each sensor on the path from v to s
will transmit the packets originated by v at random within
the designated subintervals according to DAS. These trans-
missions will not alter the transmission profile observed by
any set of colluding eavesdroppers, as real packets substitute
dummy ones. Moreover, since hop-by-hop re-encryption is
applied at the link layer, copies of the same packet traversing
multiple hops remain indistinguishable. Because the adver-
sary cannot distinguish real packets from dummy ones and
the transmission pattern is decorrelated from the event pat-
tern, ε(loc, t) is unobservable. However, DAS reveals the
sink’s location. This is because the sink is the only sensor
transmitting during subinterval I1k (all other sensors have an
id larger than 1). Hence, DAS may only be adopted when
the sink’s location must not remain secret.

When the sink’s location must be concealed, we use a
mechanism that trades communication efficiency for privacy.
We label the set Dj as a tree rooted at a randomly chosen
node v. As in the case of DAS, sensor u ∈ Dj transmits
according to its depth in the tree. To guarantee the deliv-
ery of a packet from any sensor to the sink (which differs
from the tree root), we divide interval Ik into 2` subinter-
vals. Each sensor v ∈ Dj is assigned to transmit one packet
in subintervals I`−idvk and I`+idvk . Based on this schedule, a
real packet originating from any sensor v, will reach the ran-
domly selected root by subinterval I`k. The real packet will
continue its propagation to the rest of the sensors of the tree
during subintervals I`+1

k to I2`k . This mechanism implements

a form of flooding, restricted to the sensors of the CDS. Be-
cause the tree root is randomly selected, the transmission
schedule cannot be used to infer the sink’s location.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our scheme

in terms of communication overhead and packet delay. Our
simulations were developed using MATLAB 2012. The sim-
ulation results are based on 10 independent runs.

5.1 Generation of an MCDS Partition
In this set of experiments, we studied the performance of

Algorithm 1 in terms of (a) the average fraction of sensors
that belong in a CDS; (b) the number of CDSs needed to
span V; and (c) the probability mass function (pmf) of the
frequency of appearance. We randomly deployed a WSN
within an area of 1, 000 m ×1, 000 m and varied the average
node degree δ (by increasing the number of sensors). Sensor
locations were randomly drawn from a uniform distribution
to generate random topologies. We then applied Algorithm
1 and obtained the set of CDSs {D1, . . . ,Dz} that span V.

Figure 2(a) shows the average fraction of V that belongs
to a CDS as a function of δ. Confidence intervals of 95%
are also shown. The CDS size indicates the energy savings
compared to prior methods that require all sensors in the
WSN to be active at a constant rate [9,14]. We observe the
fraction to be as few as 31% of sensors are active when δ =
10, with less than 7% being active when δ = 60. Figure 2(b)
shows the average number of CDSs generated by Algorithm
1 as a function of δ. The value of z is a critical factor for
the delay until a CDS that contains the real source becomes
active. We observe an almost linear increase of z with δ. We
note that z implements a tradeoff between the delay and the
communication overhead. A partition of the WSN to fewer
CDSs increases the size of each CDS and consequently the
number of active sensors. However, less time is required to
rotate through each of the CDSs. In Figure 2(c), we show
the empirical probability mass function of the frequency of
appearance f , which is a measure of the “quality” of the
partition of V. We observe that more that 67% of sensors
are part of only one CDS, while 95% of the sensors have an
f less than four. This indicates that Algorithm 1 favors the
creation of CDSs that are disjoint to a large degree, reducing
the per-sensor communication overhead.

5.1.1 Communication Overhead and Delay
In the second set of experiments, we compared the perfor-

mance of DAS with the case where sensor transmissions are
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Figure 3: (a) Average delay as a function of the hop
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the packet rate.

uncoordinated (referred to as Base) and the schemes in [9,12]
(referred to as ConsRate). In ConsRate, perfect contextual
privacy is achieved by fixing the packet rate of every sensor.
To provide a fair comparison, every scheme was considered
under a fixed communication overhead budget. This bud-
get was defined by the number of packets transmitted by all
nodes in the network per time interval.

We first considered the end-to-end delay for real packets.
Figure 3(a) shows the average end-to-end delay E[d] as a
function of the hop count to the sink. The delay is mea-
sured in number of intervals until a packet is delivered to
the destination. The CDS was rotated per interval. We ob-
serve that DAS achieves a constant packet delay irrespective
of the hop count to the sink. This is because a real packet
always reaches the sink at the end of the interval when the
CDS containing the real source becomes active. DAS out-
performs the other schemes for a hop count larger than three
hops. For shorter hop counts ConsRate incurred the lowest
delay. This is because for short path lengths, the fixed de-
lay until the corresponding CDS becomes active dominates
the overall packet delay. We further observe that DAS in-
troduces a significantly lower delay than the Base scheme.
Moreover, Base has the highest delay variance due to the
uncoordinated nature of the real packet relay operation.

We also studied the delay reduction gained by DAS due to
the loose coordination of packet transmissions as a function
of the average packet rate at each sensor. In Figure 3(b), we
compare the packet delay of DAS with the Base case. DAS
has a fixed delay equal to the CDS rotation delay. On the
other hand, in the Base scheme the delay decreases with the
packet rate. This is primarily due to the reduction of the
forwarding delay once a real packet has been transmitted.
However, the overall delay is lower-bounded by the delay un-
til a CDS containing the real packet source becomes active.

6. CONCLUSIONS
We addressed the problem of preserving the privacy of

contextual information in WSNs under colluding eavesdrop-
pers. We proposed a traffic normalization scheme that sig-
nificantly reduces the number of bogus traffic sources. This
was achieved by partitioning the WSN to a set of CDSs that
approximate an MCDS partition. We further reduced the
end-to-end packet delay by loosely coordinating the trans-
missions of sensors within each CDS. We showed that our
scheme guarantees the location and time of occurrence pri-
vacy of WSN events. Moreover, the end-to-end real packet
delay is reduced.
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