
1

ECE 274 - Digital Logic
Lecture 18

Lecture 18 – Memory
RAM/ROM/EPROM/EEPROM/FLASH

2

Memory Components

Register-transfer level
design instantiates datapath
components to create
datapath, controlled by a
controller

A few more components are
often used outside the
controller and datapath

MxN memory
M words, N bits wide each

Several varieties of
memory, which we now
introduce

5.6

N-bits
wide each

M×N memory

M
 w

or
ds

3

Random Access Memory (RAM)
RAM – Readable and writable memory

“Random access memory”
Strange name – Created several decades ago to
contrast with sequentially-accessed storage like
tape drives

Logically same as register file – Memory with
address inputs, data inputs/outputs, and control

RAM usually just one port; register file usually
two or more

RAM vs. register file
RAM typically larger than roughly 512 or 1024
words
RAM typically stores bits using a bit storage
approach that is more efficient than a flip flop
RAM typically implemented on a chip in a square
rather than rectangular shape – keeps longest
wires (hence delay) short

32

10
data

addr

rw

en

1024× 32
RAM

32

4

32

4
W_data

W_addr

W_en

R_data

R_addr

R_en
16×32

register file

Register file from Chpt. 4

RAM block symbol

4

RAM Internal Structure

Similar internal structure as register file
Decoder enables appropriate word based on address
inputs
rw controls whether cell is written or read
Let’s see what’s inside each RAM cell

32

10
data

addr

rw

en

1024x32
RAM

addr0
addr1

addr(A-1)

clk
en
rw

addr

Let A = log2M

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka “cell”)

word

word

RAM cell

word
enable

word
enable

rw

data cell

data

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

enable

5

Static RAM (SRAM)

“Static” RAM cell
6 transistors (recall inverter is 2 transistors)

Writing this cell
word enable input comes from decoder
When 0, value d loops around inverters

That loop is where a bit stays stored
When 1, the data bit value enters the loop

data is the bit to be stored in this cell
data’ enters on other side
Example shows a “1” being written into cell

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data

a

SRAM cell
data data’

d’d
cell

0word
enable

1

1

1

0

0

32

10
data

addr

rw

en

1024x32
RAM

SRAM cell
data data’

d

word
enable

data data’

d’d cell

0word
enable

1 0

a

a

6

Static RAM (SRAM)

“Static” RAM cell
Reading this cell

Somewhat trickier
When rw set to read, the RAM logic sets
both data and data’ to 1
The stored bit d will pull either the left line
or the right bit down slightly below 1
“Sense amplifiers” detect which side is
slightly pulled down

The electrical description of SRAM is really
beyond our scope – just general idea here,
mainly to contrast with DRAM...

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data

SRAM cell

32

10
data

addr

rw

en

1024x32
RAM

data data’

d

1

1 1

word
enable

To sense amplifiers

1 0

1 <1
a

7

Dynamic RAM (DRAM)

“Dynamic” RAM cell
1 transistor (rather than 6)
Relies on large capacitor to store bit

Write: Transistor conducts, data voltage
level gets stored on top plate of capacitor
Read: Just look at value of d
Problem: Capacitor discharges over time

Must “refresh” regularly, by reading d and
then writing it right back

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data DRAM cell

32

10
data

addr

rw

en

1024x32
RAM

word
enable

data

cell

(a)

(b)

data

enable

d discharges

d
capacitor
slowly
discharging

8

Comparing Memory Types
Register file

Fastest
But biggest size

SRAM
Fast
More compact than register file

DRAM
Slowest

And refreshing takes time
But very compact

Use register file for small items,
SRAM for large items, and DRAM
for huge items

Note: DRAM’s big capacitor
requires a special chip design
process, so DRAM is often a
separate chip

MxN Memory
implemented as a:

register
file

SRAM

DRAM

Size comparison for same
number of bits (not to scale)

9

Reading and Writing a RAM

Writing
Put address on addr lines, data on data lines, set rw=1, en=1

Reading
Set addr and en lines, but put nothing (Z) on data lines, set rw=0
Data will appear on data lines

Don’t forget to obey setup and hold times
In short – keep inputs stable before and after a clock edge

clk

addr

data

rw

en

1 2

9 913

999 Z 500500

3

1 means write

RAM[9]
now equals 500

RAM[13]
now equals 999

(b)

valid

valid

Z 500

access
time

setup
time

hold
time

setup
time

clk

addr

data

rw

10

RAM Example: Digital Sound Recorder

Behavior
Record: Digitize sound, store as series of 4096 12-bit digital values in
RAM

We’ll use a 4096x16 RAM (12-bit wide RAM not common)
Play back later
Common behavior in telephone answering machine, toys, voice recorders

To record, processor should read a-to-d, store read values into
successive RAM words

To play, processor should read successive RAM words and enable d-to-a

wire

speaker

microphone

wire
analog-to-

digital
converter

digital-to-
analog

converter
ad_ld da_ld

Rrw RenRa
12

16

processor

ad_buf

da
ta

ad
dr

rw en

4096⋅ 16
RAM

11

RAM Example: Digital Sound Recorder
RTL design of processor

Create high-level state
machine
Begin with the record
behavior
Keep local register a

Stores current address,
ranges from 0 to 4095 (thus
need 12 bits)

Create state machine that
counts from 0 to 4095 using
a

For each a
Read analog-to-digital
conv.

ad_ld=1, ad_buf=1
Write to RAM at address a

Ra=a, Rrw=1, Ren=1

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1

S

a=0

a=a+1

a=4095

a<4095
T

U

Local register: a (12 bits)

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM

a

Record behavior

12

RAM Example: Digital Sound Recorder
Now create play behavior
Use local register a again,
create state machine that
counts from 0 to 4095 again

For each a
Read RAM
Write to digital-to-analog
conv.

Note: Must write d-to-a one
cycle after reading RAM, when
the read data is available on
the data bus

The record and play state
machines would be parts of a
larger state machine controlled
by signals that determine
when to record or play

a

da_ld=1

ad_buf=0
Ra=a
Rrw=0
Ren=1

V

a=0

a=a+1

a=4095

a<4095
W

X

Local register: a (12 bits)

Play behavior

data bus

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM

13

Read-Only Memory – ROM
Memory that can only be read from, not
written to

Data lines are output only
No need for rw input

Advantages over RAM
Compact: May be smaller
Nonvolatile: Saves bits even if power
supply is turned off
Speed: May be faster (especially than
DRAM)
Low power: Doesn’t need power supply to
save bits, so can extend battery life

Choose ROM over RAM if stored data won’t
change (or won’t change often)

For example, a table of Celsius to
Fahrenheit conversions in a digital
thermometer

32

10
data

addr

rw

en

1024× 32
RAM

RAM block symbol

32

10
data

addr

en

1024x32
ROM

ROM block symbol

14

Read-Only Memory – ROM

Internal logical structure similar to RAM, without the data
input lines

32

10
data

addr

en

1024x32
ROM

ROM block symbol

ROM cell

addr0
addr1

addr(A-1)

clk
en

addr

Let A = log2M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

word
enable

rdata(N-1) rdata(N-2) rdata0

bit storage
block
(aka “cell”)

word

word
enable

word
enable

data

data

15

ROM Types
If a ROM can only be read,
how are the stored bits stored
in the first place?

Storing bits in a ROM known as
programming
Several methods

Mask-programmed ROM
Bits are hardwired as 0s or 1s
during chip manufacturing

2-bit word on right stores “10”
word enable (from decoder)
simply passes the hardwired value
through transistor

Notice how compact, and fast,
this memory would be

cell cell

word
enable

data line data line01

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

16

ROM Types

Fuse-Based Programmable
ROM

Each cell has a fuse
A special device, known as a
programmer, blows certain fuses
(using higher-than-normal voltage)

Those cells will be read as 0s
(involving some special electronics)
Cells with unblown fuses will be read
as 1s
2-bit word on right stores “10”

Also known as One-Time
Programmable (OTP) ROM

cell cell

word
enable

data line data line11

blown fusefuse

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

a

17

ROM Types
Erasable Programmable ROM
(EPROM)

Uses “floating-gate transistor” in each
cell
Special programmer device uses higher-
than-normal voltage to cause electrons
to tunnel into the gate

Electrons become trapped in the gate
Only done for cells that should store 0
Other cells (without electrons trapped in
gate) will be 1

2-bit word on right stores “10”

Details beyond our scope – just general
idea is necessary here

To erase, shine ultraviolet light onto chip
Gives trapped electrons energy to escape
Requires chip package to have window

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

cell cell

word
enable

data line data line

eÐeÐ
a

ting

g

a

t

e t

r

t

or

trapped electrons

01

flo
at

in
g-

ga
te

tra

ns
is

to
r

18

ROM Types
Electronically-Erasable Programmable ROM
(EEPROM)

Similar to EPROM
Uses floating-gate transistor, electronic programming
to trap electrons in certain cells

But erasing done electronically, not using UV light
Erasing done one word at a time

Flash memory
Like EEPROM, but all words (or large blocks of
words) can be erased simultaneously
Become common relatively recently (late 1990s)

Both types are in-system programmable
Can be programmed with new stored bits while in
the system in which the ROM operates

Requires bi-directional data lines, and write control
input
Also need busy output to indicate that erasing is in
progress – erasing takes some time

a

ting

g

a

t

e t

r

t

or

32

10
data

addr

en

write

busy

1024x32
EEPROM

19

ROM Example: Talking Doll

Doll plays prerecorded message, trigger by vibration
Message must be stored without power supply Use a ROM, not a RAM,
because ROM is nonvolatile

And because message will never change, use a mask-programmed ROM or
OTP ROM

Processor should wait for vibration (v=1), then read words 0 to 4095
from the ROM, writing each to the d-to-a

4096x16 ROM

processor

d

a

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

speaker

vibration
sensor

“Hello there!”

“Hello there!” audio
divided into 4096
samples, stored
in ROM

“H
ello there!”

a

20

ROM Example: Talking Doll

High-level state machine
Create state machine that waits for v=1, and then counts from 0
to 4095 using a local register a
For each a, read ROM, write to digital-to-analog converter

d

a

4096x16 ROM

processor

Ra

16

Ren

da_ld

digital-to-
analog

converter

v

Sa=0

da_ld=1
a=a+1a=4095

a<4095
T

U

Ra=a
Ren=1

Local register: a (12 bits)

v

v’
a

21

ROM Example: Digital Telephone Answering
Machine Using a Flash Memory

Want to record the outgoing
announcement

When rec=1, record
digitized sound in locations
0 to 4095
When play=1, play those
stored sounds to digital-to-
analog converter

What type of memory?
Should store without power
supply – ROM, not RAM
Should be in-system
programmable – EEPROM
or Flash, not EPROM, OTP
ROM, or mask-programmed
ROM
Will always erase entire
memory when
reprogramming – Flash
better than EEPROM

analog-to-
digital

converter
digital-to-

analog
converterad_ld

da_ld

Rrw Rener buRa
12

16

processor

ad_buf

busy

4096x16 Flash

rec
playrecord

microphone speaker

“We’re not home.”

22

ROM Example: Digital Telephone Answering
Machine Using a Flash Memory

High-level state machine
Once rec=1, begin
erasing flash by setting
er=1
Wait for flash to finish
erasing by waiting for
bu=0
Execute loop that sets
local register a from 0 to
4095, reading analog-
to-digital converter and
writing to flash for each
a

d

a

r

w

en

analog-to-
digital

converter
digital-to-

analog
converterad_ld

da_ld

Rrw Ren er buRa
12

16

processor

ad_buf

4096x16 Flash

rec
playrecord

microphone speaker

T
er=0

bu

bu’

er=1
rec

S

Local register: a (13 bits)

a=4096

a<4096
U

V

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1
a=a+1

a=0

a

23

Blurring of Distinction Between ROM
and RAM

We said that
RAM is readable and writable
ROM is read-only

But some ROMs act almost like RAMs
EEPROM and Flash are in-system programmable

Essentially means that writes are slow
Also, number of writes may be limited (perhaps a few million times)

And, some RAMs act almost like ROMs
Non-volatile RAMs: Can save their data without the power supply

One type: Built-in battery, may work for up to 10 years
Another type: Includes ROM backup for RAM – controller writes RAM contents
to ROM before turning off

New memory technologies evolving that merge RAM and ROM
benefits

e.g., MRAM
Bottom line

Lot of choices available to designer, must find best fit with design goals

EEPROM
ROM Flash

NVRAM

RAM
a

