
1 2 4 3 4 2Ragone M. , Gianelli S. , Schwartz D. , Su L. , Koyluoglu O. O. , Fellous JM.
(1) Undergraduate Biology Research Program, University of Arizona, (2) Department of Psychology, University of Arizona, 

(3) Department of Computer Science, Zhejiang University, (4) Department of Electrical and Computer Engineering, University of Arizona.  

1. Introduction

4. Conclusions

6. Acknowledgements

2. Methods

5. References

3. Results

The Role of Hippocampal Replay in a Computational Model of Path Learning

Contact Information: micragone@email.arizona.edu

Supported by grants ONR MURI N000141310672 (JMF), UBRP (MR), NSF IIS 1464349 (OOK). 
Thanks to Stephanie Nagl, Blaine Harper, and Tatiana Pelc for rat data and for their help.

2.1 Sphero

2.2 Model

2.3 Decoder

3.1 Sphero and rat movement

3.5 Decoder

3.6 Replay

3.2 Basic model

3.3 Synaptic modification - single synapse

3.4 Synaptic modification - full network
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Ÿ Previous research has shown that the hippocampus contains 
[5,7]cells that code for the spatial position of an animal.

Ÿ Hippocampal place cells reactivate during sleep. This 
reactivation occurs during Sharp Wave Ripple complexes 
(SPWs). The post-learning pattern of pairwise correlations is 

[4,6]similar to what is observed during the task.

Ÿ Spike Timing Dependent Plasticity (STDP) is a mechanism of 
[1]

activity-mediated weight change in the hippocampus.

Ÿ During a spatial navigation task, place cell population activity 
can be used to estimate the position of the rat in the 

[2,3]environment.

Ÿ Few studies have used mobile robots to mimic the behavior 
[8,9]of rats or to interact with rats in real-time.

Ÿ We build a computational model of place cells in the 
hippocampus, investigate the nature of cells that replay, and 
quantify the information content of replayed and non-
replayed cells’ activities.

Ÿ Wireless connection (100 m radius).

Ÿ Joystick control or autonomous navigation 
using predefined targets and speeds.

Ÿ Capable of interacting with rats and 
replicating their trajectories from a 
recorded track file.

Ÿ Cells emitting more than 1.5 spikes 
per SPW in which they replay are 
considered ‘replayed cells’.

Ÿ 12 ± 5% cells replay after learning.

Ÿ Path reconstruction with only the 
spikes of replayed cells is more 
accurate than the reconstruction 
achieved by randomly selecting a 
non-replayed population of the same 
size.
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The robot has lower but commensurate path variability 
than that of a rat.

Synaptic weights increase to their maximal value in 
about 10 trials

STDP
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Ÿ Place cells whose fields overlap 
with the track and each other are 
frequently co-active.

Ÿ Correlated activity results in 
synaptic changes due to STDP.

Ÿ The synaptic matrix becomes 
sparser with the number of trials. 

Ÿ The strongest synaptic weights 
by trial 8 correspond to cell pairs 
whose fields intersect with the 
path.
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Ÿ Spike trains generated by the model are 
converted to firing rates.

Ÿ The linear decoder estimates locations 
based on firing rates and place fields.
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Ÿ Built in NEURON.

Ÿ Single-compartment cells.

Ÿ 100 place cells, 20 interneurons.

Ÿ All-to-all connectivity.

Ÿ Synaptic currents: AMPA and 
GABA

+ + 2+
Ÿ Membrane currents:  Na , K , Ca , 

2+IK[Ca ], and calcium dynamics.

Ÿ Ornstein-Uhlenbeck stochastic 
process mimicking in vivo-like 
membrane noise.
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Ÿ Spike trains generated by the model are input 
to the linear decoder.

Ÿ The difference in decoded paths between a 
trained network and an untrained network is 
small.

Ÿ Plasticity does not predictably improve or 
impair the performance of the decoder.
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The model produces spike trains with in-vivo like 
characteristics and variability.

Spike train decoding: Trial 1

50 cm

true path

SPW recorded from a rat

The most frequently replayed 
cells’ fields are on the path.

Place fields weighted by participation in replay
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  Algorithm: Linear Decoder

Require: Vector of firing rates f, Matrix of coordinates 
of centers of place fields (PFs) [x, y]

Ensure: Position estimate [ẋ, ẏ]

1.

2.

Ÿ Define the core of a place field to be a centered, circular 
subsection of the place field.

Ÿ For each cell whose core intersects the path, compute the 
probability that it participates in a SPW replay event.

Ÿ The more a place cell’s field overlaps with the path, the 
more likely it is to replay.

3.8 Replay depends on path-place field overlap

Ÿ Sphero can approximate rat spatial trajectories.

Ÿ We build a realistic biophysical model of a hippocampal 
CA1 neural network.

Ÿ We implement STDP and show that the connectivity 
matrix becomes sparser with the number of trials.

Ÿ The highest synaptic weights belong to cell pairs whose 
fields overlap and intersect the learned path.

Ÿ We use a linear decoder to reconstruct the path from 
spike trains.

Ÿ After learning, SPWs activate path-relevant place cells.

Ÿ Replayed cells produce a better reconstruction of the 
path than random, non-replayed cells.

Ÿ Cells with place fields that highly overlap the path are the 
most likely to replay.

Ÿ Investigate effects of plasticity during SPWs.
Ÿ Attempt to replicate electrophysiological data using 

Sphero input to the model.
Ÿ Investigate effects of structure of voltage input as it 

relates to replay.
Ÿ Analyze model data for forward and backward replay.
Ÿ Investigate possible extension of results to grid cell 

networks.

Future Work

*      p < .05,  **   p < .01,  ***  p < .001
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