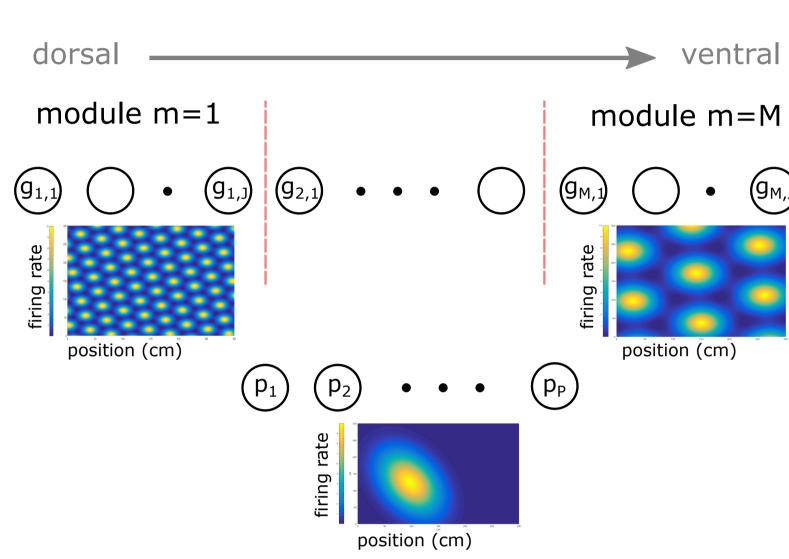


Abstract

- The joint activity of grid and place cell populations forms a neural code for space.
- We measure the performance of a network of these populations, as well as interneurons, which implement biologically realizable de-noising algorithms.
- Simulations demonstrate that these de-noising mechanisms can significantly reduce mean squared error (MSE) of location decoding.
- The modular organization of grid cells can improve MSE.

The hybrid code

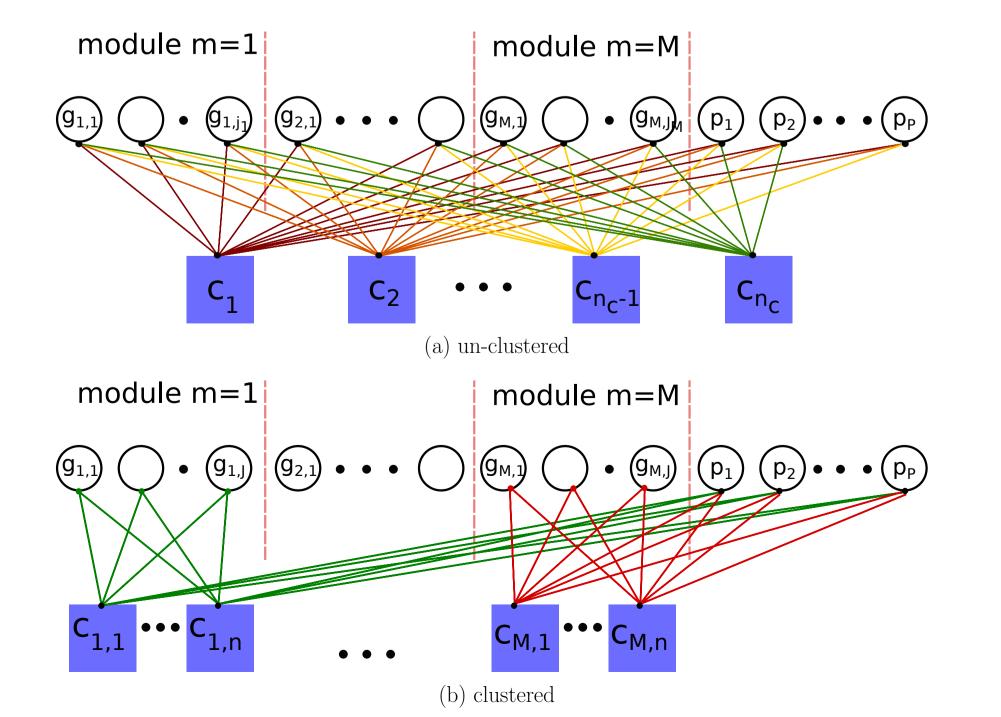


- Components: N neurons, M grid modules (m), with J neurons.
- Grid cell tuning curves

$$g_{m,j}(\mathbf{s}) = \frac{f_{\text{max}}}{Z} \exp \left[\sum_{k=1}^{3} \cos(\frac{4}{\lambda_m \sqrt{3}} \mathbf{u}(\theta_k - \theta_{m,j}) \cdot (\mathbf{s} - \mathbf{c}_{m,j}) + \frac{3}{2}) - 1 \right]$$

- $-\mathbf{u}(\theta_k \theta_{m,j})$ is a unit vector in the direction of $\theta_k \theta_{m,j}$
- $-\mathbf{s} \in [0, L] \times [0, L]$ is the position stimulus
- $-\mathbf{c}_{m,j}$, $\theta_{m,j}$, and λ_m are spatial phase offset, orientation offset, and scaling ratio
- -Orientations, $\theta_{m,j} \in \{-60^{\circ}, 0^{\circ}, 60^{\circ}\}$
- -Z is a normalizing constant (≈ 2.857399)
- $-f_{\rm max}$ is the grid cell's maximum firing rate
- Place cells have bivariate Gaussian tuning curves with mean $\boldsymbol{\xi} \in [0, L] \times [0, L], \, \rho \in [-\frac{1}{2}, \frac{1}{2}], \, \text{and covariance } \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$
- Codewords are formed by concatenating actities of these cells

De-noising network



A hybrid code from grid and place cells

David M. Schwartz and O. Ozan Koyluoglu Laboratory for Information Processing Systems University of Arizona

- This network is a bipartite graph consisting of N pattern neurons and n_i interneurons
- The un-clustered design: Interneurons are connected to a random set of grid and place cells
- The clustered design:
- —Interneurons are split into M distinct clusters of n interneurons per cluster with each cluster connected to a distinct grid module.
- Interneurons are connected randomly to pattern neurons chosen from a set consisting of every grid cell in the corresponding module, and every place cell.

Subspace learning

- Before denoising is possible, this network must learn (i.e. adapt its weights for) the hybrid code.
- Code subspace learning is complete when the interneurons may be read to determine if the states of the pattern neurons map to a valid codeword, i.e. when the network has developed a connectivity matrix, W, whose rows are approximately perpendicular to the code space.
- (anti)Hebbian learning update rule:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha_t(y(\mathbf{x} - \frac{y\mathbf{w}}{\|\mathbf{w}\|^2}) + \eta\Gamma(\mathbf{w}, \theta)),$$

- $-\alpha_t$ is the learning rate at iteration t
- $-y = \mathbf{x}'\mathbf{w}$ is the scalar projection of \mathbf{x} onto \mathbf{w}
- $-\theta$ is a sparsity threshold
- $-\eta$ is a penalty coefficient
- $-\Gamma$ is a sparsity enforcing function, approximating the gradient of a penalty function, $g(\mathbf{w}) = \sum_{k=1}^{m} \tanh(\sigma \mathbf{w}_k^2)$, which, for appropriate choices of σ , penalizes non-sparse solutions early in the learning procedure.

Algorithm 1 Neural Learning **Require:** set of C patterns, C, stopping point, ϵ Ensure: learned weights matrix, W 1: for rows, \mathbf{w} , of W do for $t \in \{1, ..., T_{\text{max}}\}$ do $\alpha_t \leftarrow \max\{\frac{50 \cdot \alpha_0}{50 + \log_{10}(t)}, 0.005\}$ $\mathbf{for}\ \mathbf{c}\in\mathcal{C}\ \mathbf{do}$ $y \leftarrow \mathbf{c} \cdot \mathbf{w}$ if $\|\mathbf{c}\| > \epsilon$ then $\alpha_t \leftarrow \frac{\alpha_0}{\|\mathbf{c}\|^2}$ $\mathbf{w} \leftarrow \text{Dale}(\text{update}(\mathbf{c}, \mathbf{w}, \alpha_t, \theta_t, \eta))$ if $\|\underline{\mathbf{C}}\mathbf{w}'\| < \epsilon$ then $t \leftarrow t + 1$ end for for components, w_i of w do $\mathbf{w}_i \leftarrow 0$ end if end for 22: end for

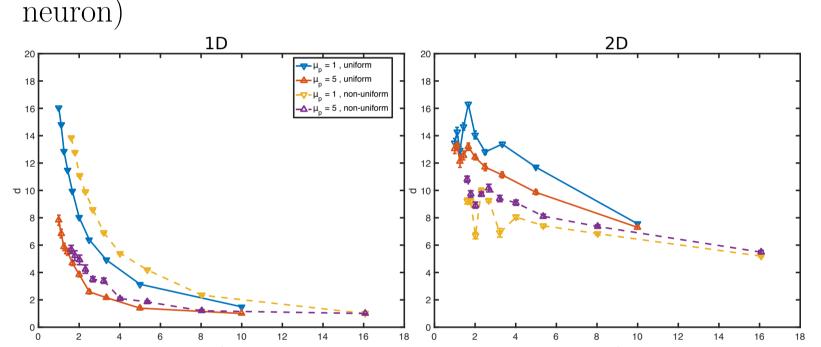
De-noising algorithms

- Goal: Recover the correct pattern of activity, \mathbf{x} from the noisy state, $\mathbf{x}_n = \mathbf{x} + \mathbf{n}$, where \mathbf{n} is this noise pattern.
- $\mathbf{x}_n W'$ reveals inconsistencies in \mathbf{x}_n that the de-noising algorithm seeks to correct in the feedback stage. To see this, consider that $\mathbf{x}_n W' = (\mathbf{x} + \mathbf{n})W' = \mathbf{x}W' + \mathbf{n}W' \approx 0 + \mathbf{n}W'$.
- Clustered de-noising begins with Algorithm 2. Algorithm 3 is invoked if errors are detected.
- Un-clustered de-noising utilizes Algorithm 3, treating the entire network as a single cluster.

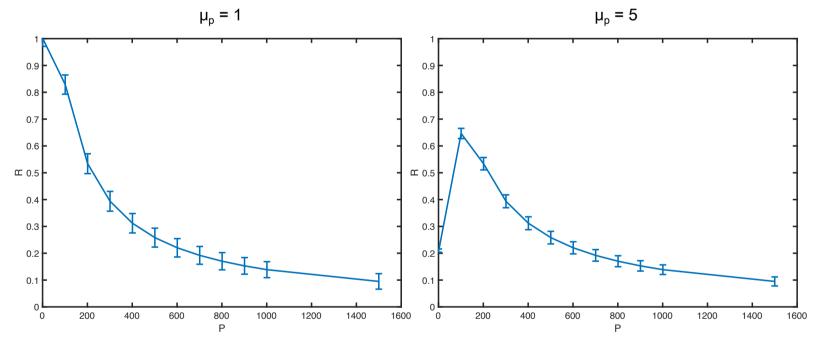
Algorithm 2 Sequential de-Algorithm 3 Modular Recall Require: local weights for this cluster, W, maximum noising number of iterations, T_{max} , noisy subpattern, \mathbf{x} , feed-Require: local weights, W_i , for each cluster, $i \in$ $\{1,...,M\}$, noisy pattern, \mathbf{x}_n , stopping threshold, ϵ Ensure: denoised subpattern, d Ensure: denoised pattern, \mathbf{x}_d 1: $\mathbf{d} \leftarrow \mathbf{p}$ 1: $\mathbf{x}_d \leftarrow \mathbf{x}_r$: while $t < T_{\text{max}}$ do 2: while $t < T_{\text{max}}$ or a cluster has an unsatisfied con- $\mathbf{v} \leftarrow \mathbf{x} W'$ $\mathbf{r} \leftarrow \mathbf{y}'W$ for each cluster, $i \in \{1, ..., M\}$ do $\text{if } \|\mathbf{y}\| < \epsilon \text{ then }$ $\mathbf{x} \leftarrow \text{subpattern corresponding to cluster } i$ $\mathbf{d} \leftarrow \text{Modular_Recall}(\mathbf{x}, W_i)$ end if if $|dW_i| < \epsilon$ then $\mathbf{f} \leftarrow \frac{|\mathbf{y}'| \cdot |W|}{m}$ \mathbf{x}_d (cluster i's subpattern indices) $\leftarrow \mathbf{d}$ end if for each pattern neuron, j do end for if $\mathbf{f}_j \geq \phi$ then $\mathbf{f}_j = \operatorname{sign}(\mathbf{x}_j)$ $t \leftarrow t + 1$ else $\mathbf{f}_i = 0$ 11: end while end if $\mathbf{d} \leftarrow \mathbf{d} + \mathbf{f}$ 14: end while

Coding theoretic results

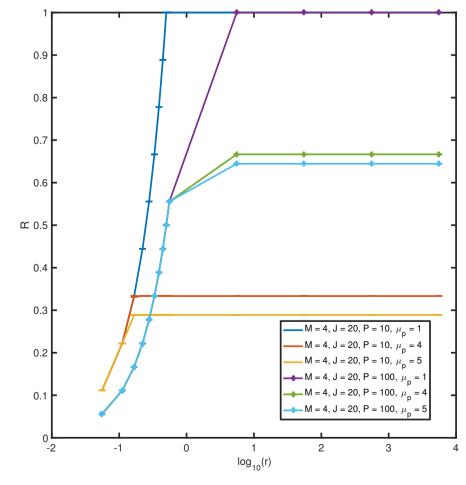
- Define μ_p , a hybrid code configuration's spatial phase multiplicity (i.e. maximum number of grid cells with the same phase in the same module)
- **Define** $\mu_o = \frac{J}{3}$, the code's orientation multiplicity
- **Define** d, minimum pairwise distance between codewords
- **Define** $R = \frac{\operatorname{rank}(\underline{\mathbf{C}})}{N}$, normalized rank of the code
- Define $r = \frac{C}{N}$, code rate (number of locations represented per neuron)



A steep tradeoff between d and r is shown in 1 and 2 dimensions. In 2D, the hybrid code generates a better d for large code r in all configurations. Further, in 2D, the code with non-uniformly allocated grid cells has significantly smaller d for a fixed r. Thus, in 2D, for a fixed r (i.e. for codes of the same rate), the code with uniformly allocated grid cells should be capable of better de-noising performance.



Code rank (R) vs. number of place cells (P) for the hybrid code in 2D, with a uniform allocation of grid cells; here (and in any other plot containing them) error bars indicate standard error of the mean

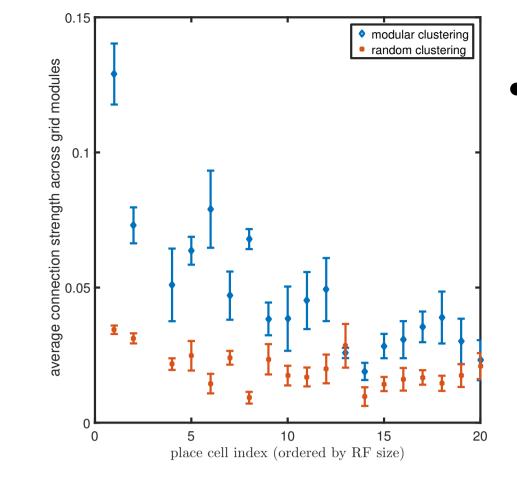


- Random phases often produces a code with R=1, independent of how grid cells are distributed to modules.
- Choosing $\mu_p > 1$ enables the code to achieve low rank at high rate (important for denoising a code with a large number of locations)

Subspace learning results

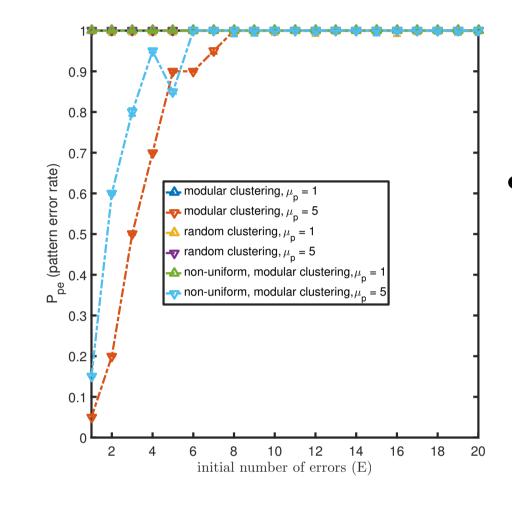
• **Define** connection strength from place cells to grid modules by $\frac{1}{n_i}(\sum_{(i,j)} |w_{i,j}w_{i,p}|)$ (for interneurons, i, grid cells, j, in module m).

THE UNIVERSITY OF ARIZONA

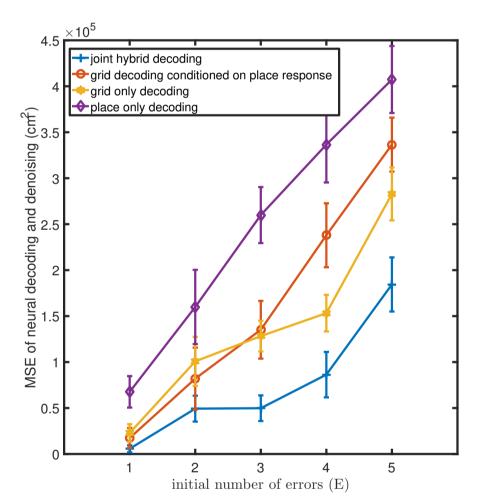


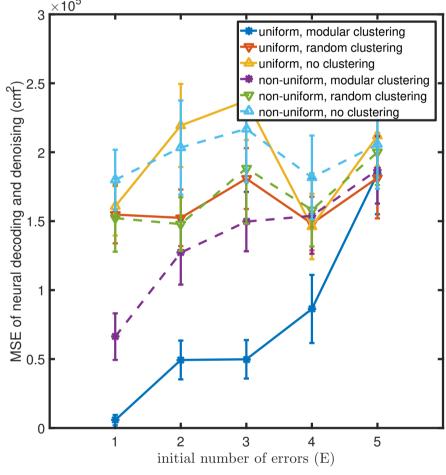
• Average connectivity appears to decrease with increasing place cell size, for the modularly clustered network, as compared to a random clustering which produces nearly the same connectivity for each place cell. This trend appears for any $\mu_p > 1$.

De-noising results



• Pattern error rate (rate of occurrence of incorrect codewords after de-noising); only clustered configurations with $\mu_p > 1$ perform well here





MSE (in cm²) of maximum likelihood position estimation from de-noised codewords; (left) comparison of decoding algorithms incorporating different cellular information; (right) comparison of MSE of joint hybrid decoding after de-noising for different de-noising network configurations; (both) for a hybrid code with M = 4, J = 20, P = 10, and $\mu_p = 5$, and deliberately chosen grid cell parameters

Discussion

- The grid code is dense.
- Inclusion of place cells and in the future, other cell types (e.g. head direction cells, border cells, time cells) this code could be made sparser.
- Codes with any desired rank can be constructed by proper choice of population parameters.
- Random choices of these parameters render the code too dense for effective de-noising.
- Biological choices of orientation and phase produce readily de-noisable codes for position.

References

[1] Stensola, Hanne, Tor Stensola, Trygve Solstad, Kristian Frland, May-Britt Moser, and Edvard I. Moser. "The Entorhinal Grid Map Is Discretized." Nature 492, no. 7427 (2012): 72-78. doi:10.1038/nature11649.
[2] Salavati, Amir Hesam, K. Raj Kumar, and Amin Shokrollahi. "Nonbinary Associative Memory With Exponential Pattern Retrieval Capacity and Iterative Learning." IEEE Transactions on Neural Networks and Learning Systems 25, no. 3 (2014): 557-70. doi:10.1109/tnnls.2013.2277608.

[3] Oja, Erkki, and Juha Karhunen. "On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix." Journal of Mathematical Analysis and Applications 106, no. 1 (1985): 69-84.

[4] Karbasi, Amin, Amir Hesam Salavati, and Amin Shokrollahi. "Iterative Learning and Denoising in Convolutional Neural Associative Memories." In ICML (1), pp. 445-453. 2013.

[5] Fiete, Ila R., Yoram Burak, and Ted Brookings. "What grid cells convey about rat location." The Journal of Neuroscience 28, no. 27 (2008): 6858-6871.

[6] Wenberg, Daniel, and Yasser Roudi. The Distribution of Spatial Phases of Grid Cells. Master's thesis, NTNU, 2015. 1-89.

Accessed November 7, 2016. http://hdl.handle.net/11250/2359809.