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Abstract
• The joint activity of grid and place cell populations forms a neu-

ral code for space.

•We measure the performance of a network of these populations,
as well as interneurons, which implement biologically realizable
de-noising algorithms.

• Simulations demonstrate that these de-noising mechanisms can
significantly reduce mean squared error (MSE) of location decod-
ing.

• The modular organization of grid cells can improve MSE.

The hybrid code
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•Components: N neurons, M grid modules (m), with J neu-
rons.

•Grid cell tuning curves
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
– u(θk − θm,j) is a unit vector in the direction of θk − θm,j
– s ∈ [0, L]× [0, L] is the position stimulus

– cm,j, θm,j, and λm are spatial phase offset, orientation offset,
and scaling ratio

– Orientations, θm,j ∈ {−60◦, 0◦, 60◦}
–Z is a normalizing constant (≈ 2.857399)

– fmax is the grid cell’s maximum firing rate

•Place cells have bivariate Gaussian tuning curves with mean

ξ ∈ [0, L]× [0, L], ρ ∈ [−1
2,

1
2], and covariance
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•Codewords are formed by concatenating actities of these cells

De-noising network
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•This network is a bipartite graph consisting of N pattern neu-
rons and ni interneurons

•The un-clustered design: Interneurons are connected to a
random set of grid and place cells

•The clustered design:

– Interneurons are split into M distinct clusters of n interneu-
rons per cluster with each cluster connected to a distinct grid
module.

– Interneurons are connected randomly to pattern neurons cho-
sen from a set consisting of every grid cell in the corresponding
module, and every place cell.

Subspace learning

•Before denoising is possible, this network must learn (i.e.
adapt its weights for) the hybrid code.

•Code subspace learning is complete when the interneurons
may be read to determine if the states of the pattern neurons
map to a valid codeword, i.e. when the network has developed a
connectivity matrix, W , whose rows are approximately perpen-
dicular to the code space.

• (anti)Hebbian learning update rule:

w← w − αt(y(x− yw

‖w‖2
) + ηΓ(w, θ)),

– αt is the learning rate at iteration t

– y = x′w is the scalar projection of x onto w

– θ is a sparsity threshold

– η is a penalty coefficient

– Γ is a sparsity enforcing function, approximating the gradient

of a penalty function, g(w) =
m∑
k=1

tanh(σwk
2), which, for ap-

propriate choices of σ, penalizes non-sparse solutions early in
the learning procedure.

Algorithm 1 Neural Learning
Require: set of C patterns, C, stopping point, ε
Ensure: learned weights matrix, W
1: for rows, w, of W do
2: for t ∈ {1, ..., Tmax} do
3: αt ← max{ 50·α0

50+log10(t)
, 0.005}

4: θt ← θ0
t

5: for c ∈ C do
6: y ← c ·w
7: if ‖c‖ > ε then
8: αt ← α0

‖c‖2

9: end if
10: w← Dale(update(c,w, αt, θt, η))
11: end for
12: if ‖Cw′‖ < ε then
13: break
14: end if
15: t← t+ 1
16: end for
17: for components, wi of w do
18: if |wi| ≤ ε then
19: wi ← 0
20: end if
21: end for
22: end for

De-noising algorithms

•Goal: Recover the correct pattern of activity, x from the noisy
state, xn = x + n, where n is this noise pattern.

• xnW
′ reveals inconsistencies in xn that the de-noising al-

gorithm seeks to correct in the feedback stage. To see this, con-
sider that xnW

′ = (x + n)W ′ = xW ′ + nW ′ ≈ 0 + nW ′.

•Clustered de-noising begins with Algorithm 2. Algorithm 3
is invoked if errors are detected.

•Un-clustered de-noising utilizes Algorithm 3, treating the
entire network as a single cluster.

Algorithm 2 Sequential de-
noising
Require: local weights, Wi, for each cluster, i ∈
{1, ...,M}, noisy pattern, xn, stopping threshold, ε

Ensure: denoised pattern, xd
1: xd ← xn
2: while t < Tmax or a cluster has an unsatisfied con-

straint do
3: for each cluster, i ∈ {1, ...,M} do
4: x← subpattern corresponding to cluster i
5: d← Modular Recall(x,Wi)
6: if |dWi| ≤ ε then
7: xd(cluster i’s subpattern indices)← d
8: end if
9: end for

10: t← t+ 1
11: end while

Algorithm 3 Modular Recall
Require: local weights for this cluster, W , maximum

number of iterations, Tmax, noisy subpattern, x, feed-
back threshold, φ

Ensure: denoised subpattern, d
1: d← p
2: while t < Tmax do
3: y← xW ′

4: r← y′W
5: if ‖y‖ < ε then
6: break;
7: end if
8: f ← |y′|·|W |

m∑
i=1

|W |

9: for each pattern neuron,j do
10: if fj ≥ φ then fj = sign(xj)
11: else fj = 0
12: end if
13: end for

d← d + f
14: end while

Coding theoretic results

•Define µp, a hybrid code configuration’s spatial phase multi-
plicity (i.e. maximum number of grid cells with the same phase
in the same module)

•Define µo = J
3 , the code’s orientation multiplicity

•Define d, minimum pairwise distance between codewords

•Define R =
rank(C)
N , normalized rank of the code

•Define r = C
N , code rate (number of locations represented per

neuron)
1D 2D
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A steep tradeoff between d and r is shown in 1 and 2 dimensions. In 2D, the hybrid code generates a
better d for large code r in all configurations. Further, in 2D, the code with non-uniformly allocated grid
cells has significantly smaller d for a fixed r. Thus, in 2D, for a fixed r (i.e. for codes of the same rate), the
code with uniformly allocated grid cells should be capable of better de-noising performance.
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Code rank (R) vs. number of place cells (P ) for the hybrid code in 2D, with a uniform allocation of
grid cells; here (and in any other plot containing them) error bars indicate standard error of the mean
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•Random phases often pro-
duces a code with R = 1, in-
dependent of how grid cells are
distributed to modules.

•Choosing µp > 1 enables
the code to achieve low rank
at high rate (important for de-
noising a code with a large
number of locations)

Subspace learning results

•Define connection strength from place cells to grid modules by
1
ni

(
∑

(i,j)
|wi,jwi,p|) (for interneurons, i, grid cells, j, in module m).
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modular clustering

random clustering

•Average connectivity ap-
pears to decrease with increas-
ing place cell size, for the mod-
ularly clustered network, as
compared to a random clus-
tering which produces nearly
the same connectivity for each
place cell. This trend appears
for any µp > 1.

De-noising results
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•Pattern error rate (rate of
occurrence of incorrect code-
words after de-noising); only
clustered configurations with
µp > 1 perform well here
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MSE (in cm2) of maximum likelihood position estimation from de-noised codewords; (left) comparison of decoding
algorithms incorporating different cellular information; (right) comparison of MSE of joint hybrid decoding after

de-noising for different de-noising network configurations; (both) for a hybrid code with M = 4, J = 20, P = 10, and
µp = 5, and deliberately chosen grid cell parameters

Discussion

•The grid code is dense.

• Inclusion of place cells and in the future, other cell types
(e.g. head direction cells, border cells, time cells) - this code
could be made sparser.

•Codes with any desired rank can be constructed by proper
choice of population parameters.

•Random choices of these parameters render the code too
dense for effective de-noising.

•Biological choices of orientation and phase produce readily
de-noisable codes for position.
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