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Abstract

e The joint activity of grid and place cell populations forms a neu-
ral code for space.

e We measure the performance ot a network of these populations,
as well as interneurons, which implement biologically realizable
de-noising algorithms.

e Simulations demonstrate that these de-noising mechanisms can
significantly reduce mean squared error (MSE) of location decod-
ng.

e The modular organization of grid cells can improve MSE.

The hybrid code
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e Components: N neurons, M grid modules (m), with J neu-
Tons.

e Grid cell tuning curves
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—u(0), — 0, ;) is a unit vector in the direction of 0}, — 0y, ;

—s € |0, L] x [0, L] is the position stimulus

—Cppj, Om, 5, and Ay are spatial phase offset, orientation offset,
and scaling ratio

— Orientations, 8, ; € {—60°,0°,60°}
— 7 is a normalizing constant (=~ 2.857399)

— fmax 1s the grid cell’s maximum firing rate

e Place cells have bivariate Gaussian tuning curves with mean
2
€ < [07 L] X [07 L]7 p € [_%7 %], and covariance ( 1 pUlJQ)
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e Codewords are formed by concatenating actities of these cells
De-noising network
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e This network is a bipartite graph consisting of /N pattern neu-
rons and n; interneurons

e The un-clustered design: Interneurons are connected to a
random set of grid and place cells

e The clustered design:

— Interneurons are split into M distinct clusters of n interneu-
rons per cluster with each cluster connected to a distinct grid
module.

— Interneurons are connected randomly to pattern neurons cho-
sen from a set consisting of every grid cell in the corresponding
module, and every place cell.

Subspace learning

e Before denoising is possible, this network must learn (i.e.
adapt its weights for) the hybrid code.

e Code subspace learning is complete when the interneurons
may be read to determine if the states of the pattern neurons
map to a valid codeword, i.e. when the network has developed a
connectivity matrix, W, whose rows are approximately perpen-
dicular to the code space.

¢ (anti)Hebbian learning update rule:

W wW—a(y(x — —=5) +nl(w,0)),

— o 18 the learning rate at iteration ¢

—y = x'w is the scalar projection of x onto w

— 6 is a sparsity threshold

—n is a penalty coefficient

—I' is a sparsity enforcing function, approximating the gradient
of a penalty function, g(w) = f} tanh(ow?), which, for ap-

k=1
propriate choices of o, penalizes non-sparse solutions early in

the learning procedure.

Algorithm 1 Neural Learning

Require: set of C patterns, C, stopping point, €
Ensure: learned weights matrix, W
1: for rows, w, of W do

2 for t € {1,..., Ty} do

3 Qp max{ﬁgﬁﬁ), 0.005}
4: 0, « %

0 for c € C do

0: Yy C-wW

7 if ||c|| > ¢ then

8: y — H‘é‘ﬁ

9: end if

10: w < Dale(update(c, w, ay, 0;,m))
11: end for

12: if ||Cw'|| < e then

13: break

14: end if

15: t+—t+1

16: end for

17: for components, w; of w do
18: if |w;| < e then

20: end if

21: end for

22: end for

De-noising algorithms

e (Goal: Recover the correct pattern of activity, x from the noisy
state, x,, = X + n, where n is this noise pattern.

e x,1V’ reveals inconsistencies in x,, that the de-noising al-
corithm seeks to correct in the feedback stage. To see this, con-

sider that x, W' = (x + n)W' = xW' +nW’' ~ 0+ nW’.

e Clustered de-noising begins with Algorithm 2. Algorithm 3
1s invoked if errors are detected.

e Un-clustered de-noising utilizes Algorithm 3, treating the
entire network as a single cluster.

Algorithm 2 Sequential de- Algorithm 3 Modular Recall

noising Require: locajl We1ghts for this .cluster, W, maximum
number of iterations, T,.x, noisy subpattern, x, feed-

back threshold, ¢
Ensure: denoised subpattern, d

Require: local weights, W;, for each cluster, 7 €
{1, ..., M'}, noisy pattern, x,, stopping threshold, €

Ensure: denoised pattern, x4 l:d«p
L xg < xp 2: while < Ty do
2: while t < T,,.x or a cluster has an unsatisfied con- 3 v« xIW’

straint do 4 r y'W
3 for each cluster, i € {1,..., M} do 5 if ||y|| < ¢ then
4 X <— subpattern corresponding to cluster ¢ G: break:
D d < Modular_Recall(x, W;) 7. end if 7
0: if |dW;| < e then Q- £ YW
T x4(cluster i’s subpattern indices) < d Zl W
8: end if 9: for each pattern neuron,j do
9: end for 10: if f; > ¢ then f; = sign(x;)
10: t+t+1 11: else f; =0
11: end while 12: end if

13: end for
d«d+f

14: end while

Coding theoretic results

e Define pup, a hybrid code configuration’s spatial phase multi-
plicity (i.e. maximum number of grid cells with the same phase
in the same module)

e Define p, = %, the code’s orientation multiplicity

e Define d, minimum pairwise distance between codewords

rank(C :
e Define R = T<—>, normalized rank of the code
e Define r = %7 code rate (number of locations represented per
neuron)
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A steep tradeoff between d and r is shown in 1 and 2 dimensions. In 2D, the hybrid code generates a
better d for large code r in all configurations. Further, in 2D, the code with non-uniformly allocated grid
cells has significantly smaller d for a fixed r. Thus, in 2D, for a fixed r (i.e. for codes of the same rate), the
code with uniformly allocated grid cells should be capable of better de-noising performance.
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Code rank (R) vs. number of place cells (P) for the hybrid code in 2D, with a uniform allocation of
grid cells; here (and in any other plot containing them) error bars indicate standard error of the mean
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¢ Random phases often pro-
duces a code with R = 1, in-
dependent of how grid cells are
distributed to modules.
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e Choosing ), > 1 enables
the code to achieve low rank
at high rate (important for de-
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Subspace learning results

e Define connection strength from place cells to grid modules by
n%((z) lw; jw; »|) (for interneurons, 4, grid cells, 7, in module m).
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e Average connectivity ap-
pears to decrease with increas-
ing place cell size, for the mod-
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De-noising results
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=t=joint hybrid decoding

-©-grid decoding conditioned on place response
4 [+ grid only decoding
— -9-place only decoding
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MSE (in cm?) of maximum likelihood position estimation from de-noised codewords; (left) comparison of decoding
algorithms incorporating different cellular information; (right) comparison of MSE of joint hybrid decoding after
de-noising for different de-noising network configurations; (both) for a hybrid code with M =4, J = 20, P = 10, and

iy = 5, and deliberately chosen grid cell parameters

Discussion

e The grid code is dense.

e Inclusion of place cells and in the future, other cell types
(e.g. head direction cells, border cells, time cells) - this code
could be made sparser.

e Codes with any desired rank can be constructed by proper
choice of population parameters.

e Random choices of these parameters render the code too
dense for effective de-noising.

e Biological choices of orientation and phase produce readily
de-noisable codes for position.
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