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1 Abstract

A model of interactions between mammalian brain regions Hippocampal CA1, CA3, and Medial En-
torhinal Cortex (MEC) is considered and shown to be effective in exploiting each population’s activity to
ameliorate the effects of neural noise on the other in [19, 20, 21]. Here, this model is recosidered in an in-
formation theoretic framework. Results of the evaluation of collective information processing properties of
the network’s de-noising process through the lenses of interaction information are presented and discussed.
Preliminary observations on transfer entropies during de-noising are discussed. Further exploration from
this new vantage point, involving validation of the model presented here against experimental observations,
as well as the investigation of directed information during de-noising are proposed.

2 Introduction

Place cells are spatially modulated neurons with bivariate Gaussian tuning curves centered on particular
locations in the environment, and have been identified in the hippocampus [4]. Grid cells are spatially
modulated neurons that exhibit a peak firing rate at a periodic and hexagonally symmetric distribution of
locations in the envirionment, and are found in the Entorhinal Cortex (EC) of rats, mice, bats, and humans
[29, 5, 6, 8]. Grid cells are clustered in discrete modules wherein cells share grid scale. Anatomically, both
cell types share a dorsoventral organization, with cells possessing wider receptive fields distributed towards
the ventral end [24, 23]. It is known that the rat grid cell network requires communication from the
hippocampus to maintain grid-like activity [1], and that a significant improvement in accuracy of the
rodent place cell representation is tightly correlated with the emergence of the grid cell network [12].
However, the mechanisms by which these networks communicate and how each may bolster the other’s
accuracy are unknown.

To the best of the author’s knowledge, information theoretical investigation of these cells activities and
their potential for collusion has yet to be published or investigated rigorously. In this work, we seek to
characterize and study limits on the information processing in colluding populations of grid, place, and
time cells, modeled as in our earlier approaches (i.e. as in [19, 20, 21]). Such a theoretical characterization
may serve to provide experimental neuroscientists with hunches and predictions to guide their own interro-
gations, while simultaneously enhancing neuroscience’s understanding of information and coding theoretic
properties of the mammalian navigational neural codes.

This paper is organized sectionally: We begin by with a short primer on navigational neural codes,
and their experimentally observed behavior. Section 4 develops the theoretical framework supporting
all numerical simulation experiments, results, and analysis thereof. In section 5, we state and illustrate
observations on distributions of interaction informations across populations. In section 6, we analyze the
aforementioned results, analyze said results, discuss limiations of these analyses, and suggest avenues for
further investigation.

∗The author is with the University of Arizona. Email:dmschwar@email.arizona.edu.



3 Background

3.1 Place cells

Place cells are pyramidal cells in the mammalian hippocampus (HC) whose firing rates depend on the
location of the organism [15]. Their receptive fields (mappings of a space of percepts - e.g. position, time,
head direction, angle of a bar of light, etc. - to firing rate of a cell) appear to be approximately bivariate
Gaussian centered at the cell’s preferred location. Anatomically, place cells are organized dorso-ventrally
by increasing area of coverage of their place fields [24].
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Figure 1: Receptive field of a typical ideal place cell

3.2 Grid cells

Grid cells are spatially modulated neurons, found in the meidal entorhinal cortex (MEC), that exhibit
a peak firing rate at a periodic and hexagonally symmetric distribution of locations in the envirionment,
and are found in the Entorhinal Cortex (EC) of rats, mice, bats, and humans [5, 6, 29, 8]. Grid cells are
clustered in discrete modules wherein cells share grid scale. Like place cells, grid cells are also organized
dorso-ventrally by width the period of the grid field, with wider receptive fields distributed towards the
ventral end [23].
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Figure 2: Receptive field of a typical ideal grid cell

3.3 Time cells

Time cells, found in HC and MEC, fire at successive moments in a temporally ordered sequence of
events [17]. Here, they are modeled phenomenologically with a Gaussian receptive field centered on the
cells preferred instant. It has been reported that there is a significant positive correlation between a time
cell’s preferred moment (i.e. the center of the time field) and the apparent width of the time field - that
is, cells that prefer to fire later in the sequence tend to spike for a greater duration [17].
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Figure 3: Receptive field of a typical ideal time cell

3.4 Decoding population activity

In order to quantify the information content of the population, we estimated the location encoded by
the population using a brute force maximum a posteriori approach, in which we compute

x̂ = argmax
x∈E

P (k|x),

where E is the set of all possible quantized positions in space-time and k is a vector representing the
population’s firing rate response to the position and time we wish to estimate. Since we assume that each
cell fires as a poisson process with rate parameter equal to the cell’s instantaneous firing rate, if we further
assume that cells fire independently and that simulated cell firing rate is sampled uniformly at a sampling
period of τ = 1 second, and that cell i has receptive field given by fi(x), it is easy to decompose P (k|x) as

P (k|x) =
n∏
i=1

P (ki|x) =
n∏
i=1

(fi(x))kiexp(−fi(x))

ki!

Then, log(P (k|x)) =
n∑
i=1

−kifi(x)log(fi(x))− log(ki!) and we can safely further reduce our decoding com-

plexity by ignoring the constant term (
n∑
i=1

log(ki!)). Unfortunately, if one wishes to make no assumptions

about the continuity of the rat’s motion, one must search the complete set of quantized positions for
maximizing x. This maximimum likelihood approach optimally estimates location from population ac-
tivity when coupled with strong and true assumptions about the cells’ receptive fields (i.e. trustworthy
knowledge of fi, for i ∈ {1, ..., n}). There are several other decoding mechanisms popularly employed in
decoding activity from real and simulated place cells including basis function decoders and kalman filters
[30]. Consider a naive linear estimator, implemented in Algorithm 1, which produces a firing-rate-weighted
average of the place cells’ centers. As discussed in [30], this linear estimator is equivalent to an instance
of the more general basis function decoder for the appropriate choice of basis and template function.

Algorithm 1 Linear Decoding

Input: Vector of firing rates, f , Matrix whose rows are coordinates of centers of place cell RFs [x,y]
Output: Position estimate, (x̂, ŷ)
1: Normalization: fN ← f∑

i
fi

2: x̂← fN · x
3: ŷ ← fN · y
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Figure 4: Mean error of position decoding from 100 networks of 120 place cells with realistically param-
eterized place field sizes and place field centers chosen uniformly randomly from a 300cm wide square
environment

We also consider an iterated extended Kalman filter, described in detail in [2, 11] whose internal models
assume Poisson-like spiking governed by rate parameters equal to the cells’ firing rates. This Kalman filter
decoder was considered in order to acquire a benchmark for comparison of the aforementioned decoders
to state of the art. In figure 4 we show mean error of position decoding in (cm) from 100 networks of
120 place cells each, with a realistic variety of place field widths, and place field centers chosen uniformly
randomly from quantized positions in a 300cm wide square environment. Surprisingly, the naive linear
decoder is only barely outperformed by the Kalman filter and the maximum likelihood (ML) approach.
Error bars indicate standard error of the mean (i.e. ratio of standard deviation to square root of number of
trials). Unsurprisingly, all of the decoding methods considered dramatically and significantly outperform
bogo decoder, which guesses locations uniformly randomly from the environment. Also unsurprisingly,
each systematic decoder performs close to the empirically observed optimum (achieved by the Kalman
filter).

4 Theoretical framework

4.1 Population parameterization

To develop a code for spatio-temporal position, we extend the code described in [21] and [19] with
instantiation of a population of nG grid, nP place, and nT time cells (a total of N neurons), modeled
phenomenologically: The time cells are defined by univariate gaussian tuning curves with mean νt ∈ [0, τ ]
and variance σ2

t ∈ [0.1, τ
2
], where τ is the duration of the path to encode. Denote the ’time field’ of time cell

k by Tk. In electrophysiologcal single cell recordings, time cells in observed in both hippocampal regions
CA1 and CA3 exhibit a strong postive correlation between their preferred temporal position (νt) and the
width of their time field, (σ2

t ) [17]. We consider both this deliberately parameterized scheme, as well as
one in which we impose no correlation between νt and σ2

t . We parameterize populations of grid and place
cells similarly. That is, each grid cell’s tuning curve follows a two-dimensional distribution resembling a
von-Mises density function,

gm,j(s) =
fmax

Z
exp

[
3∑

k=1

cos(
4

λm
√

3
u(θk − θm,j) · (s− cm,j) +

3

2
)− 1

]
,

where u(θk − θm,j) is a unit vector in the direction of θk − θm,j, s ∈ [0, L]× [0, L] is the position stimulus,
cm,j, θm,j, and λm are the grid cell’s spatial phase offset, orientation offset, and scaling ratio (L is defined

as the length of a sqaure arena). The grid cells’ scaling ratio λ∗ = λm+1

λm
, for the jth grid cell in module

m. Grid cell orientations were considered as ideal values about which the measurements presented in
[23] fluctuate. Place fields are modeled as thresholded bivariate Gaussian distributions over [0, L]× [0, L].
Denote the place field belonging to place cell i as pi. Upon instantiation, place field centers are chosen



uniformly pseudorandomly from [0, L]× [0, L], and place field widths are chosen uniformly pseudorandomly
from [0.9λ1, 1.1λM ], where M is the largest grid module index.

4.2 A hybrid code for spatio-temporal position

We compute neural codes for space and time as functions of real paths recorded from a rat’s traversal
of a square arena of length 300cm during a spatial navigation task. By using real paths, we ensure that our
results depend on biologically real spatiotemporal stimulus statistics, strengthening biological predictions.
Specifically, we stimulate each grid, place, and time cell with (xi, yi, ti)i, the recorded sequence of positions
of an led tracker mounted on the animal’s head ({(xi, yi)}) and times ({ti}) at which the rat was visited
the ith position.

Figure 5: An example of a short path traversed by Zenith, a Brown Norway

4.3 De-noising network

Our earlier results, discussed in [21], indicate that a clustered de-noising network oupterforms all un-
clustered variants considered. With this in mind, we implement a de-noising network with the topology
illustrated in figure 6, custering interneurons to associate with corresponding grid modules, as well as
any place or time cell. This way, information may only flow accross grid modules through interneurons
mutually coupled to place or time cells.

module m=1 module m=M

g1,1 g1,j1
g2,1 gM,1 gM,JM p1 pPp2

c
1

c2 cnc-1
cnc

t1 tntt2

Figure 6: The clustered de-noising network implmented in [21], augmented with time cells

4.4 Path space learning

Before we can use the de-noising system to correct corrupted codewords, it must learn (i.e. adapt its
weights for) the code. This process is complete when the interneurons may be read to determine if the
states of the pattern neurons map to a valid codeword. Formally, this amounts to finding a connectivity
matrix, W (Wi,j is the synaptic weight between interneuron i and pattern neuron j), whose rows are
approximately perpendicular to the code space. A procedure to procure such a matrix is outlined in [14],
and improved in [16]. These algorithms begin with a random set of vectors, and for each, seeks a nearby



vector orthogonal to C (i.e. a vector onto which each element of C has minimal projection). We implement
this in Algorithm 4.4 (a derivation of this algorithm can be found in the appendix in section 7.1) by
applying it to each cluster’s local connectivity matrix. Note that here, all arithmetic on the synaptic
weights, Wi,j is performed in R, while arithmetic on states of neurons (i.e. their firing rates), is quantized
to the nearest integer in [0, Q−1]. The maximum firing rate, Q−1, is identical for all neurons. With each
update,

w← w − αt(y(x− yw

‖w‖2
) + ηΓ(w, θ)),

where θ is a sparsity threshold, η is a penalty coefficient, y = xTw is the scalar projection of x onto w,
and αt is the learning rate at iteration t. Γ is a sparsity enforcing function, approximating the gradient

of a penalty function, g(w) =
m∑
k=1

tanh(σwk
2), which, for appropriate choices of σ, penalizes non-sparse

solutions early in the learning procedure [16].
As in [16], to speed up learning, we approximate Γ = ∇g with

Γ(wt, θt) =

{
wt : |wt| ≤ θt
0 : otherwise

This is a an improved approximation to Oja’s Hebbian learning algorithm [14], with advantages in both
biological plausibility and computational complexity. For connections of fixed type (i.e. inhibitory vs
excitatory), Oja’s rule alone is biologically dubious without the inclusion of many interneurons to manage
this change in type. Dale’s Principle states that real synaptic connections change type rarely, if ever [3]. In
accordance with this principle, our update rule does not allow weights to change sign. This is accomplished
after the updated weights are determined: If the sign has changed after applying the update, set the new
weight to a value just above (resp. just below) zero if the previous weight was positive (resp. negative).
Thus, when learning is complete, these weights will be small in magnitude and are thresholded to zero.

In Algorithm 4.4, line 11 terminates the learning process if the sum of the projections of the current
weight vector on each pattern is no more than ε away from zero, that is, if the current weight vector is
approximately orthogonal to the code space. Lines 17-21 perform a thresholding operation that maps to
zero any weight sufficiently small in magnitude. This is primarily to suppress numerical errors and promote
consistency, as in Line 11, we use ε as a small positive constant. Note that since the weights processed
on each iteration are independent of those in other iterations, this algorithm can be readily parallelized so
that each constraint neuron learns its weights simultaneously.



Algorithm 2 Neural learning

Input: set of C patterns, C, stopping point, ε
Output: learned weights matrix, W
1: for rows, w, of W do
2: for t ∈ {1, ..., Tmax} do
3: αt ← max{ 50·α0

50+log10(t)
, 0.005}

4: θt ← θ0
t

5: for c ∈ C do
6: y ← c ·w
7: if ‖c‖ > ε then
8: αt ← α0

‖c‖2
9: end if
10: w← Dale(update(c,w, αt, θt, η))
11: end for
12: if ‖Cw′‖ < ε then
13: break
14: end if
15: t← t+ 1
16: end for
17: for components, wi of w do
18: if |wi| ≤ ε then
19: wi ← 0
20: end if
21: end for
22: end for

4.5 De-noising

We implemented a Bit Flipping style neural de-noising process. In all configurations considered here
(and in [19, 20, 21]), the bit flipping algorithm has proven to perform no worse that winner-take-all.
Moreover, since it requires only the implementation of additional parallel thresholding operations for each
pattern neuron, its implementation is no less biologically feasible. The goal of this algorithm is to recover
the correct activity pattern, x, which has been corrupted by noise, and as such, is represented by a noisy
version, xn = x + n, where n is this noise pattern. Since each weight vector is nearly perpendicular
to every pattern, for a matrix of weights, W , xnW

′ reveals inconsistencies in xn, which the de-noising
algorithm seeks to correct in the feedback stage 1. The clustered de-noising process begins with algorithm
4.5, in which each cluster attempts to detect errant pattern neurons. If no errors are detected, the process is
complete. Otherwise, Algorithm 4.5 is invoked for each cluster that detected errant neurons. Note that this
de-noising mechanism differs from error correction methods presented in [5] and [22] in that information
contributed by place cells only reaches grid cells through interneurons, and place information contributed
by grid cells at module i only reaches other modules through interneurons if connectivity (determined by
correlations in the neural code) allows.

1To see this, consider that xnW
′ = (x+ n)W ′ = xW ′ + nW ′ ≈ 0 + nW ′



Algorithm 3 Sequential de-noising

Input: local weights, Wi, for each cluster, i ∈ {1, ...,M}, noisy pattern, xn, stopping threshold, ε
Output: denoised pattern, xd

xd ← xn
while t < Tmax or a cluster has an unsatisfied constraint do

for each cluster, i ∈ {1, ...,M} do
x← subpattern corresponding to cluster i
d← Modular Recall(x,Wi)
if |dWi| ≤ ε then

xd(cluster i’s subpattern indices)← d
end if

end for
t← t+ 1

end while

Algorithm 4 Modular recall

Input: local weights for this cluster, W , maximum number of iterations, Tmax, noisy subpattern, x,
feedback threshold, φ

Output: denoised subpattern, d
d← p
while t < Tmax do

y← xW ′

r← y′W
if ‖y‖ < ε then

break;
end if
f ← |y′|·|W |

m∑
i=1
|W |

for each pattern neuron,j do
if fj ≥ φ then fj = sign(xj)
else fj = 0
end if

end for
d← d + f

end while

4.6 Interaction information

Here we will consider activities (i.e. firing rates) of members of populations of cells as random variables.
We will use here the traditional definitions of shannon entropy, Kullback-Leibler divergence, and mutual
informations. Following the examples of Mcgill and others (as discussed in [27]), we will define interaction
information between random variables X, Y , and Z as

II(X;Y ;Z) = I(X;Y |Z)− I(X;Y )

= I(X;Z|Y )− I(X;Z)

= I(Z;Y |X)− I(Z;Y )

When II(X;Y ;Z) > 0, we say that the variables interact synergistically (as this implies that knowedge
X enhances quantity of information transmitted by Y about Z and by Z about Y ). Otherwise, we say



that the variables interact redundantly. This is also intuitive since this inequlity implies that knowledge
of X does not improve quantity of information about Z carried by Y , nor does it improve quantity of
information carried by Z about Y .

4.7 Transfer entropy and directed information

Transfer entropy is measure of quantity of information transferred between two stochastic processes
originally developed to quantify statistical coherence of time varying systems. For random processes
denoted by Xt and Yt, transfer entropy from Xt to Yt is defined as

TX→Y = H(Yt|Y(t−1):(t−L))−H(Yt|Y(t−1):(t−L), X(t−1):(t−L))

, where L defines the length of recorded history of Xt and Yt. It is established that transfer entropy better
captures information transfer between two stochastic processes described by time series than time lagged
mutual information [18] and [27].

Another information theoretic measurement that quantifies the extent to which information appears

to flow from a random process, X1:n, to Y1:n, given as I(X1:n → Y1:n) =
n∑
i=1

I(X1:n;Yi|Yi−1). Directed

information can be thought of as the amount of information that flows between two random processes.
Moreover, Massey demonstrated that in a channel with feedback, diredcted information provides a more
useful characterization of a channel than mutual information. Specifically, he showed that when the channel
in question (i.e. the distributions linking X1:n and Y1:n) experiences feedback, directed information gives a
tighter upper bound on information Y1:n encodes about X1:n [10].

5 Results

5.1 Interaction information results

Figure 7: Shown here is the observed distribution of interaction informations between pairs of grid cells
whose members belong to the same module, and pairs whose members belong to different modules; results
here computed from 10 model networks consisting of 4 modules, with 20 grid cells per module

We compute interaction information between pairs of grid cells residing in the same module, and pairs
whose members reside in different modules, over ten networks of randomly initialized grid cells, following
the deliberate biological scheme, in which grid cell phase and orientation offests, and the scales are chosen
so as to mimic the empirical observations of [23]. In order to assess a network’s synergy, we compute the
average interaction information across all cell pairs, µII . Interestingly, we found that intra-modular grid
cell pairs are mostly redundant (µII = 0.040±0.016 bits - mean ± standard deviation). On the other hand,
extra-modular grid cell pairs tended strongly towards synergy (µII = 1.021 ± 0.181). Most interestingly,
if we neglect to enforce the deliberate biological parameterization of the grid cell network, we observe no



significant difference in average interaction information between intra - and extra - modular pairs. From
this, we predict that de-noising and de-coding will be impaired if synergistic populations of grid cells are
unable to communicate across modules, or if redundant populations are unable to support eachother. We

Figure 8: Shown here are observed interaction informations between pairs of cells consisting of one grid
cell and one place cell, as well as those consisting of one grid cell and one time cell; results here computed
from the same networks as in figure 7, augmented with a population of 20 place cells and 20 time cells

also computed interaction information of pairs consisting of one grid cell and one place cell, as well as those
consisting of one grid cell and one time cell. Interestingly, the two follow qualitatively similar trends, and
have no significant preference for synergy or redundancy. We observed similar results in pairs consisting
of two distinct place cells, two distinct time cells, as well as those consisting of a place cell and a time cell.
In each of these cases, the standard deviation of the interaction informations in quetion was at least one
order of magnitude larger than |µII |.

Figure 9: Shown here are observed interaction informations between pairs of place cells, and pairs consisting
of one place cell and one time cell; results here computed from the same networks as in figure 8



5.2 Denoising results

2 4 6 8 10 12 14 16 18 20
initial number of errors (E)

-4

-3

-2

-1

0

lo
g
sy
m
b
o
l
er
ro
r
ra
te

modular clustering, µp = 1
modular clustering, µp = 5
random clustering, µp = 1
random clustering, µp = 5
no clustering, µp = 1
no clustering, µp = 5
log10(E)− log10(N)

Figure 10: Log symbol error rate vs. initial number of errors (E) for clustered and non-clustered hybrid
codes; here, each code utilizes a uniform distribution of grid cells to modules, and deliberately chosen
spatial phases and orientations

Define µp, a code’s spatial phase multiplicity, which we define to be the number of grid cells with
the same phase in the same module. Figure 10 shows symbol error rates of hybrid codes for several
configurations with deliberately chosen grid cell phases and orientations. This demonstrates that generally,
clustered de-noising networks do not offer improved symbol error rate, Pse, compared to their un-clustered
counterparts. However, for a small initial number of errors (E), when the grid cells exhibit sufficient
redundancy in their phases, a randomly clustered de-noising network is only outperformed by a modularly
clustered network. Plotted in figure 10 is a red, solid curve, log10(

E
N

). This curve is a threshold between
regions of desirable and unacceptable Pse (i.e. log10(Pse) for a network that performs no de-noising). To see
this, consider a de-noising network that does not correct the E initial errors. For this network, Pse = E

N
,

so log10(Pse) = log10(E) − log10(N). Surprisingly, figure 10 shows that for a small E, configurations with
µp = 1 have log10(Pse) above this threshold, that is, they increase the number of symbol errors! From this,
we conclude that the respecting the organization of grid cells into modules, grouped by spatial period,
provides the de-noising network with better information (about the stimulus, in this case, space and time)
than not. Thise confirms our earlier prediction that if redundant populations of pairs of grid cells (i.e.
populations of intra-modular pairs) are unable to support eachother, de-noising and de-coding will be
impaired, as the randomly clustered network, which leaves grid cells from the same module disorganized
across clusters, performs significanly worse than the deliberately organized de-noising network, even when
the grid cell network has tremendous redundancy (µp = 5).

5.3 Transfer entropy results

Preliminary transfer entropy calculations are inconclusive. More precisely, none of the de-noising net-
works I have tested so far generate sufficient de-noising history that the transfer entropy estimation tech-
niques (discussed in further detail in [27]) converge and declare acceptable significance. This estimation of
transfer entropy performs a validation step to compute significance by shuffling the values of the random
processes in time, and computing expected transfer entropy from chance. More simulations are required
before conclusions can be made about transfer entropy during de-noising, for every network configuration
described here.

6 Discussion

In our investigation of interaction information between pairs of navigational cells in the mammalian
brain, we observed several intuitively explained trends. Firstly, it feels quite intuitive that pairs of grid
cells residing in the same module should tend to fire redundantly, while pairs of cells residing in different
modules should tend to fire synergistically. These observations of simulated cell activities predict that



we should see the same trend in real pairs of grid cells. Work to confirm or refute this hypothesis is
already underway with analysis of a portion of the cell activities analyzed in [23], acquired with permission
from the authors. Additionally, simultaneous single cell recordings of place cell activity were collected and
curated by the computational and experimental neuroscience lab, in the psychology department at our own
University of Arizona. Unfortunately, given the difficulty of recording single cell activity from MEC and
HC simultaneously, procuring data from which we can compute interaction information of heterogenously
typed cell pairs in vivo in the traditional manner (i.e. with the insertion of tetrodes and the recording
of individual spikes on wires) remains fantasy. However, with recent advances in optogenetics, which
enable single cell resolution of network activity for a population of inoculated cells (e.g. a collection of
grid cells, as in [25]), we may be able to obtain these desired data, despite the technical difficulty of
imaging simultaneous activity of grid and place cells at high temporal precision [7]. After inferring spikes
from these images, simultaneous firing rates of all innoculated and imaged cells may be estimated, and
these interaction informations computed [26]. We observed no significant tendency towards synergy or
redundancy in homogenous pairs of distinct place cells and distinct time cells. These observations, upon
extension to the empirically observed behavior of these cells, become hypotheses. A first step towards
validating this model should invovle testing these hypotheses, as well as those outlined in [20, 19, 21].
Additional investigation also involves the use of interaction informations and possibly other information
theoretic measurements, to analytically develop fundamental bounds on performance of the de-noising
network discussed here.

Unfortunately, at the time of submission, no significant transfer entropies were observed in any of the de-
noising epochs tested. This stems both from the computational complexity of transfer entropy estimation,
and the lack of long de-noising epochs. It appears that the transfer entropy estimation techniques devel-
oped in [27] may be inappropriate for the random processes considered in this work (i.e. time-dependent
activities of the cells through the de-noising process). However, further research, and correspondence with
authors of [27] are necessary before this conclusion may be solidified. An alternative information theoretic
measurement that may be employed to characterize flow of information during de-noising is directed in-
formation, disucssed in section 4. This quantity should prove to demand less computational overhead as
compared to transfer entropy. Additionally, given the feedback inherent in the de-noising process, directed
information may provide a more powerful understanding of network information flow during de-noising[10].
This work is already under way: most recently passing the milestone of adapting the matlab toolbox pro-
vided by the authors of [9] to ensure safe interface with the simulations discussed here. At the time of
submission, these simulations have yet to complete. We hope that directed information during de-noising
will help explain the stochastic resonance observed and described in [20], whose pathology remains a mys-
tery. A more complete understanding of HC-MEC communication is highly sought after in certain spheres
of computational neuroscience. By testing the hypotheses presented here (when possible as technology
and the availability of data allows) against empirical observations, the completion of this work via analysis
of the recently procured datasets, and the evaluation of directed information flow during de-noising may
move us towards accomplishing this goal. Completion of the aforementioned work, as well as submission
of the results to a journal of the highest esteem that will publish it, is expected by the end of the summer.

7 Appendix

7.1 Subspace learning

In [13], the authors propose an algorithm that is capable of computing a basis for the null space of a
random matrix, A, which is assumed to be the expected value of sample matrices, At. The update rule for
the matrix whose columns are the resulting basis vectors is

W̃t = Wt−1 + At−1Wt−1αt−1 (1)

Wt = W̃tR
−1
t , (2)



where αt is a diagonal (and compatible) matrix of gain factors. As in [13], equations 1 and 2 may be
re-written as operations on column vectors, wt.

w̃t = wt−1 + αt−1At−1wt−1 (3)

wt =
w̃t

‖w̃t‖
, (4)

in which αt is the gain factor corresponding to the current column. This number may be equivalently
understood as a learning rate. Indeed in [28], the authors show that for appropriate choices of At, the
update rule is a form of anti-Hebbian learning. In [13] the authors prove convergence of this algorithm to
the eigenvectors of A corresponding to the largest eigenvalues. Further, when At is replaced by −At, wt

converges to the eigenvectors of A corresponding to the smallest eigenvalues. In [13], it is demonstrated
that by combining equations 3 and 4, expanding as a power series in αt, and ignoring second (and higher)
order terms, we arrive at

wt = wt−1 + αt−1(At−1wt−1 −
wT
t At−1wt−1

wT
t−1wt−1

wt−1). (5)

The authors of [16] choose At = (xTt xt)Pxt = xtx
T
t , the product of projections onto the space spanned

by xt, and define yt = xTt wt = wT
t xt. In [13], it is mentioned that this update rule finds eigenvectors

corresponding to the largest eigenvalue of At, or those corresponding to the smallest eigenvalues of −At,
when this matrix is used instead. Since At is a projection matrix, it has rank 1. Thus it has one eigenvector
with non-zero eigenvalue, xt, and dim(x) − 1 eigenvectors with eigenvalue 0. Each of these eigenvectors,
v, is guaranteed to be perpendicular to x because Atv = 0v = 0, that is, the v’s projection onto x has
magnitude 0. By choosing xt ∈ C, with the aforementioned choice for At, this algorithm should compute
vectors approximately perpendicular to the code space.
Now, we may rewrite equation 5 as

wt = wt−1 − αt−1xt−1xTt−1wt−1 + αt−1
wT
t−1xt−1x

T
t−1wt−1

‖wt−1‖2
wt−1

= wt−1 − αt−1yt−1xt−1 + αt−1
y2t−1
‖wt−1‖2

wt−1. (6)

To obtain a sparse basis for null(C), one may add to equation 6 a regularizing term that penalizes
non-sparse solutions. In particular, using ηΓ(wt−1, θt−1), as considered in [16], to arrive at

wt = wt−1 − αt−1(yt−1(xt−1 −
yt−1wt−1

‖wt−1‖2
))− αt−1ηΓ(wt−1, θt−1). (7)

7.2 Choices of parameters

In learning, normalized weights are initialized randomly with degree d4 loge(n)e, where n is the length
of the weight vector. We used, θ0 = 0.031, ε = C10−3, η = 0.075, and α0 = 0.95. In de-noising, we set
φ = 0.95.
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