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Place cells in the hippocampus (HC) are active when an animal visits
a certain location (referred to as a place field) within an environment.
Grid cells in the medial entorhinal cortex (MEC) respond at multiple lo-
cations, with firing fields that form a periodic and hexagonal tiling of
the environment. The joint activity of grid and place cell populations,
as a function of location, forms a neural code for space. In this arti-
cle, we develop an understanding of the relationships between coding
theoretically relevant properties of the combined activity of these popu-
lations and how these properties limit the robustness of this representa-
tion to noise-induced interference. These relationships are revisited by
measuring the performances of biologically realizable algorithms imple-
mented by networks of place and grid cell populations, as well as con-
straint neurons, which perform denoising operations. Contributions of
this work include the investigation of coding theoretic limitations of the
mammalian neural code for location and how communication between
grid and place cell networks may improve the accuracy of each popu-
lation’s representation. Simulations demonstrate that denoising mecha-
nisms analyzed here can significantly improve the fidelity of this neural
representation of space. Furthermore, patterns observed in connectivity
of each population of simulated cells predict that anti-Hebbian learning
drives decreases in inter-HC-MEC connectivity along the dorsoventral
axis.

1 Introduction

Place cells are a class of spatially modulated neurons with an approxi-
mately bivariate gaussian tuning curve centered on a particular location
in the environment and have been identified in the hippocampus (O’Keefe
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& Dostrovsky, 1971; O’Keefe, 1976; Ekstrom et al., 2003). Grid cells are spa-
tially modulated neurons with firing fields that form a periodic and hexag-
onal tiling of the environment and are found in the entorhinal cortex (EC) of
rats, mice, bats, and humans (Hafting, Fyhn, Molden, Moser, & Moser, 2005;
Fyhn, Hafting, Witter, Moser, & Moser, 2008; Yartsev, Witter, & Ulanovsky,
2011; Doeller, Barry, & Burgess, 2010; Jacobs et al., 2013). Grid cells are clus-
tered in discrete modules wherein cells share grid scale (Stensola et al.,
2012). Anatomically, both cell types share a dorsoventral organization, with
cells possessing wider receptive fields distributed toward the ventral end
(Strange, Witter, Lein, & Moser, 2014; Stensola et al., 2012). It is known that
the rat grid cell network requires communication from the hippocampus
to maintain grid-like activity (Bonnevie et al., 2013) and that a significant
improvement in accuracy of the rodent place cell representation is tightly
correlated with the emergence of the grid cell network (Muessig, Hauser,
Wills, & Cacucci, 2015). However, the mechanisms by which these networks
communicate and how each may bolster the other’s accuracy are unknown.
Objectives of this work include the investigation of coding theoretic limita-
tions of the mammalian neural code for location and how communication
between grid and place cell networks may improve the accuracy of each
population’s representation.

Associative memories are a class of biologically implementable content
addressable memory consisting of networks of neurons, a learning rule,
and, in some instances, a separate recall process (Hopfield, 1982; Amit &
Treves, 1989). This means that they can be exploited to stabilize the states of
their constituent neurons to match a previously memorized network state
if enough of the network already lies in this state. The information capacity
of the simplest of these constructions is quite limited: n

2 log n bits for a net-
work of n binary neurons (McEliece, Posner, Rodemich, & Venkatesh, 1987).
However, recent advances by Salavati et al. take advantage of sparse neural
coding and nonbinary neurons to design an associative memory with in-
formation storage capacity exponential in the number of neurons (Salavati,
Kumar, & Shokrollahi, 2014). Sparse connectivity confers the memory net-
work with other performance improvements: infrequent spiking implies re-
duced energy costs and faster convergence to a stable state.

In communications, this principle is leveraged by low-density parity
check codes (LDPC), a class of linear block code whose power (in cod-
ing and decoding complexity) depends on the sparsity of the code’s par-
ity check matrix. Commonly, denoising a LDPC code involves iteratively
passing messages along edges of a bipartite graph consisting of a collec-
tion of nodes that stores and updates an estimate of the originally trans-
mitted word connected to a collection of nodes that computes the code’s
parity check equations (Chen & Fossorier, 2002; Declercq & Fossorier, 2007).
Recent developments in the intersection of coding theory and machine
learning demonstrate that neural networks can learn an approximation of
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an LDPC code’s parity structure, and by executing belief propagation al-
gorithms, they can recover memorized patterns in the presence of noise
(Salavati et al., 2014).

Nature provides myriad circumstances in which many neural com-
putations (e.g., object recognition, acoustic source localization, and self-
localization) must be executed robustly in the presence of neural noise if
the organism is to survive. We propose a denoising mechanism for popu-
lations of grid and place cells in the form of the associative memories de-
scribed in Salavati et al. (2014), Karbasi, Salavati, Shokrollahi, & Varshney
(2014), and Karbasi, Salavati, & Shokrollahi (2013), which takes advantage
of coding theoretic properties of these populations to ameliorate the nega-
tive impacts of noise. We observe that after learning, average connectivity
between place cells and grid modules decreases with increasing place field
size for each module. We demonstrate that the effectiveness of the proposed
denoising algorithm relies on the biological organization of grid cells into
discrete modules. Additional contributions of this work include the coding
model and denoising systems themselves as a framework in which to char-
acterize limits on the fidelity of cooperating neural codes subject to noise,
for physical position or other variables such as the auditory code studied
in Aronov, Nevers, and Tank (2017), and improved clarity about how pa-
rameterization of grid and place cell populations affects these fundamental
information and coding theoretic limits.

Redundancy in receptive field (RF) population codes is known to confer
improvements in decoding accuracy when a small tolerance to error is in-
troduced (expressed in this case in the stimulus space to which we decode;
Curto, Itskov, Morrison, Roth, & Walker, 2013). To our knowledge, we are
the first to investigate coding theoretic impacts of redundancy in grid cell
populations. We study the impact of this redundancy on decoding accu-
racy by comparing denoising and decoding performance across codes of
varying redundancies. We demonstrate that after denoising, a maximum
likelihood (ML) estimator reliably decodes position from population activ-
ity with small position estimation error in the presence of bounded noise.
Overall, our work shows that the biological organization of grid cells into
modules may be necessary for optimal self-localization.

This article is organized as follows. In section 1, we introduce a few key
concepts and present the main results. Section 2 introduces the theoretical
framework on which our model is built, describing code construction, de-
noising network, learning algorithms, and denoising algorithms in sections
2.1, 2.2, 2.3, and 2.4, respectively. Section 3.1 presents results of all coding
theoretic analysis and experimentation. Section 3.2 annotates results of the
learning algorithms. Section 3.3 describes outcomes of performance tests of
the denoising algorithms. Section 4 consists of a discussion of these results,
their implications and limitations, and a physiologically testable hypothesis
they inform.
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2 Theoretical Framework

2.1 A Hybrid Code. We consider a population of place and grid cells,
a total of N neurons. There are M grid cell modules, each module, m, con-
taining Jm neurons, and P place cells. Throughout this article, we use J to
refer to the number of grid cells in module 1, which—if grid cells are al-
located to modules nonuniformly—is not equal to each other module’s Ji.
The firing rate of each grid cell is denoted as gm, j, for m ∈ {1, · · · , M} and
j ∈ {1, · · · , Jm}. Place cells’ firing rates are denoted as pi, for i ∈ {1, . . . , P}.
The activity of this population, as a function of location �, is represented by

xi(�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gm, j(�), i =
m−1∑
k=1

Jk + j, i ≤
M∑

m=1

Jm

pi−MJ(�), i >

M∑
m=1

Jm

,

where the location-dependent mean firing rates of the grid cells, gm, j(�),
are given by the following two-dimensional distributions resembling von
Mises density functions,

gm, j(s) = fmax

Z
exp

[
3∑

k=1

cos
(

4

λm
√

3
u

(
θk − θm, j

))·
(

s − cm, j ) + 3
2

)
− 1

]
,

(2.1)

where u(θk − θm, j ) is a unit vector in the direction of θk − θm, j; s ∈ [0, L] ×
[0, L] is the position stimulus; and cm, j, θm, j, and λm are the grid cell’s spa-
tial phase offset, orientation offset, and scaling ratio. The angles of the si-
nusoids composing the grid pattern (i.e., θk) were taken to be ideal values
about which the measurements presented in Stensola et al. (2012) appear
to fluctuate. More precisely, we choose θk ∈ {−60◦, 0◦, 60◦}. A scaling ra-
tio of λ defines the scale of module m as λm = λ1(λ)m−1. Z is a normaliz-
ing constant (≈ 2.857399), and fmax is the grid cell’s maximum firing rate.
Unless otherwise stated, θm, j is chosen so as to mirror the observations in
Stensola et al. (2012): θm, j is identical across grid cells in the same module
(i.e., for indices m, i, j, θm,i = θm, j), and these orientation offsets are selected
randomly. In two dimensions, place cells have bivariate gaussian tuning
curves, with mean ξ ∈ [0, L] × [0, L], correlation, ρ ∈ [− 1

2 , 1
2 ] (chosen uni-

formly randomly), and covariance
(

σ 2
1

ρσ1σ2

ρσ1σ2
σ 2

2

)
, where σ1 and σ2 are cho-

sen independently and uniformly randomly from [0.9λ1, 1.1λM]. We require
that σ1 and σ2 depend on λ1 so that both grid and place cell receptive fields
lie in similar spatial scales.
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Figure 1: Concatenation of activities of grid and place cells (shown with typical
idealized model receptive fields) to form the hybrid code.

2.1.1 A Hybrid Codebook. C code words, of length N = P + ∑M
m=1 Jm, are

generated by choosing locations from the vertices of a square lattice im-
posed on the plane, with unit area equal to (�L)2 and total area equal to L2.
C is assembled by placing these code words in its rows and represents the
states of the grid and place cells when stimulated with these positions. The
mapping that forms this code is illustrated in Figure 1.

2.2 Denoising Network. Two high-capacity associative memory de-
signs are considered to test the hybrid code’s resilience to noise. In each
case, the memory network is a bipartite graph consisting of N pattern neu-
rons (i.e., grid and place cells) and nc constraint neurons. In the unclustered
design, all constraint neurons are connected to a random set of pattern neu-
rons. In the clustered configuration, the constraint neurons were split into M
distinct clusters of n constraint neurons per cluster, with each cluster con-
nected to a distinct grid module. Each cluster’s constraint neurons were
connected randomly to pattern neurons, chosen from a set consisting of ev-
ery grid cell in the corresponding module and every place cell.

We also consider a foil to this systematic clustering architecture orga-
nized by grid modules: grid and place cells are randomly assigned to clus-
ters. Figures 2a and 2b depict the general connectivity structure of the
unclustered and clustered designs, respectively. In both the clustered and
unclustered configurations, a neurally plausible modified version of Oja’s
subspace learning rule was applied to learn the code, that is, a sparse con-
nectivity matrix is found such that the weights of connections from con-
straint neurons to pattern neurons lie orthogonal to the code space (the
space spanned by C; Oja & Kohonen, 1988). This way, constraint neuron
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Figure 2: (a) Structure of an unclustered denoising network, considered as a
baseline for comparison to the neurophysiologically inspired systematic clus-
tering scheme. (b) Structure of a systematically clustered denoising network in
which clusters of constraint neurons connect to all place cells but only to the
corresponding module of grid cells.

connectivity converges to the parity structure of the code and may be used
in denoising operations.

2.3 Code Construction via Subspace Learning. Before we can use the
denoising system to correct corrupted code word, it must learn (i.e., adapt
its weights for) the hybrid code. This process is complete when the con-
straint neurons may be read to determine if the states of the pattern neurons
map to a valid code word. Formally, this amounts to finding a connectiv-
ity matrix, W (Wi, j is the synaptic weight between constraint neuron i and
pattern neuron j), whose rows are approximately perpendicular to the code
space. A procedure to procure such a matrix is outlined in Oja and Koho-
nen (1988) and improved in Salavati et al. (2014). Note here that this learning
process is not a model for the development of either grid or place cells’ ap-
parent receptive fields nor their remapping, as in Monaco & Abbott (2011).
These algorithms begin with a random set of vectors, and for each, they
seek a nearby vector orthogonal to C (i.e., a vector onto which each ele-
ment of C has minimal projection). We implement this in algorithm 1 (a
derivation of this algorithm is in appendix B. In the clustered design, al-
gorithm 1 is applied to each cluster’s local connectivity matrix. Note that
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here, all arithmetic on the synaptic weights, Wi, j, is performed in R, while
arithmetic on states of neurons (i.e., their firing rates) is quantized to
the nearest integer in [0, Q − 1]. The maximum firing rate, fmax = Q − 1,
is identical for all neurons. With each update, w ← w − αt (y(x − yw

‖w‖2 ) +
η
(w, θ )), where θ is a sparsity threshold, η is a penalty coefficient, y = xTw
is the scalar projection of x onto w, and αt is the learning rate at iteration t.

 is a sparsity-enforcing function, approximating the gradient of a penalty
function, g(w) = ∑m

k=1 tanh(σwk
2), which, for appropriate choices of σ , pe-

nalizes nonsparse solutions early in the learning procedure (Salavati et al.,
2014).

As in Salavati et al. (2014), to speed up learning, we approximate 
 = ∇g
with
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(wt, θt ) =
{

wt : |wt | ≤ θt

0 : otherwise
.

This update rule is a an improved approximation to Oja’s Hebbian learn-
ing algorithm (Oja & Kohonen, 1988), with advantages in both biological
plausibility and computational complexity. For connections of fixed type
(i.e., inhibitory versus excitatory), Oja’s rule alone is biologically dubious
without the inclusion of many constraint neurons to manage this change
in type. Dale’s principle states that real synaptic connections change type
rarely, if ever (Eccles, 1976). In accordance with this principle, our update
rule does not allow weights to change sign. This is accomplished after the
updated weights are determined. If the sign has changed after applying the
update, set the new weight to a value just above (resp. just below) zero if
the previous weight was positive (resp. negative). Thus, when learning is
complete, these weights will be small in magnitude and are thresholded to
zero.

In algorithm 1, line 12 terminates learning of the current weight, w, if
the sum of the projections of w on each pattern is no more than ε away
from zero, that is, if the current weight vector is approximately orthogo-
nal to the code space. Lines 17 to 19 perform a thresholding operation that
maps to zero any weight sufficiently small in magnitude. This is primar-
ily to suppress numerical errors and promote consistency, as in line 11, we
use ε as a small, positive constant. Note that since the weights processed on
each iteration are independent of those in other iterations, this algorithm
can be readily parallelized so that each constraint neuron learns its weights
simultaneously.

2.4 Denoising and Decoding. We implemented a bit flipping style neu-
ral denoising process, which we applied to both the clustered and unclus-
tered denoising networks. For all configurations (clustered and unclustered
and for a fixed maximum number of denoising iterations, the bit flipping
algorithm performs no worse than winner-take-all. Moreover, since it re-
quires only the additional implementation of parallel thresholding opera-
tions for each pattern neuron, a biological realization of their inclusions is
no less plausible. The goal of this algorithm is to recover the correct activity
pattern, x, which has been corrupted by noise and, as such, is currently (and
errantly) represented by a noisy version, xn = x + n, where n is this noise
pattern. Since each weight vector is nearly perpendicular to every pattern,
for a matrix of weights, W , xnW ′ reveals inconsistencies in xn, which the
denoising algorithm seeks to correct in the feedback stage.1 In denoising,
feedback weights from constraint neurons to pattern neurons are taken to

1
To see this, consider that xnW ′ = (x + n)W ′ = xW ′ + nW ′ ≈ 0 + nW ′.
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be equal to the corresponding feedforward weight (i.e., synaptic connectiv-
ity is symmetric). The clustered denoising process begins with algorithm
3, in which each cluster attempts to detect errant pattern neurons. If no er-
rors are detected, the process is complete. Otherwise, algorithm 2 is invoked
for each cluster that detected errant neurons. This and other denoising pro-
cesses are discussed in greater detail in Karbasi et al. (2013) and Salavati
et al. (2014). Note that this denoising mechanism differs from error correc-
tion methods presented in Fiete, Burak, and Brookings (2008) and Stemm-
ler, Mathis, and Herz (2015) in that information contributed by place cells
reaches grid cells only through constraint neurons, and place information
contributed by grid cells at module i reaches other modules only through
constraint neurons if connectivity allows.

In order to quantify the information content of the population, we esti-
mated the location encoded by the population using a maximum likelihood
decoder in four different schemes. Joint hybrid decoding utilizes informa-
tion from all cells. Grid- (resp. place-) only decoding utilizes information
from only grid (resp. place) cells. Grid decoding conditioned on place re-
sponse performs decoding using only information provided by the grid
cells; however, the only candidate locations considered for the estimate are
those that are not impossible given the place cell activity.
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3 Results

3.1 Coding Theoretic Results. We now endeavor to disentangle the
connections between grid and place cell parameter choices and coding the-
oretically relevant dependent variables and understand these links. The
results presented here motivate the questions answered in section 3.3, in
which we investigate how the coding parameters studied here limit fidelity
and the error correction capability of the corresponding representation of
space. We begin our investigation of coding theoretic properties of the
hybrid code by defining a measure of redundancy of grid cell population
response: μp. More precisely, we define μp, a hybrid code’s spatial phase
multiplicity, as the number of grid cells with the same phase in the same
module (e.g., if μp = 5, in a module with 20 grid cells, there must be four
unique spatial phases). This replication of grid cell phases can be considered
as a repetition code in the activity of the grid cell population. Wennberg
(2015) revealed that there may be a highly nonuniform distribution of
phases among grid cells. Considering replication of grid cells (i.e., modules
consisting of multiple grid cells of the same phase) allows us to investigate
coding theoretic repercussions of this phenomenon. Inspired by Mosheiff,
Agmon, Moriel, and Burak (2017) for each of these regimes, we consider two
distributions of grid cells to modules: uniform and nonuniform. Mosheiff
et al. (2017) find that choosing Jm ∝ 1

λm−1 produces a more efficient repre-
sentation of space. When modeling the nonuniform allocation of grid cells
to modules, we chose Jm = � J

λm−1 
, since the scale of module m is defined as
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λm = λ1(λ)m−1. Neural recordings show that the smallest scale is λ1 ≈ 40 cm
(the value used here; Stensola et al., 2012).

We construct a codebook matrix, C, by placing elements of C in its rows.
We computed normalized rank of the code, R = rank(C )

N ∈ [0, 1] as a function
of the grid scaling ratio. Normalized rank is an indicator of a code’s density,
expressed as the fraction of possible dimensions of the code space occupied
by a particular code. R is an important feature to consider since a code’s di-
mensionality determines the dimensionality of its null space, the object that
is learned by the denoising network. As discussed in Salavati et al. (2014),
if we suppose that C ⊂ R

n and dim(C) = k < n, then there are n − k mutu-
ally orthogonal vectors that are also orthogonal to our code space (e.g., any
basis for the null space of the code), each representing one valid constraint
equation. Thus, rank provides a fundamental limit on the number of unique
effective constraint nodes the denoising network may learn.

The grid cell code is known to be dense (Fiete et al., 2008). This is
especially pronounced when all orientations and phases are chosen ran-
domly (uniformly from [0, 2π] and [0, L] × [0, L], respectively), where for
all choices of other parameters, the hybrid code achieves full rank at a low
rate. That is, the experimentally observed properties of the grid cell code
described in Stensola et al. (2012) produce a measurable decrease in rank
compared to typical ranks observed when all orientations and phases are
chosen randomly.

Place cell activity forms a relatively sparse code (for enough cells and
a sufficiently large environment); thus, combining populations of grid and
place cells realizes codes that are sparser than the grid cell component of the
code. When μp = 1, a hybrid code with no place cells achieves the largest
normalized rank. Since place cells communicate redundant information,
their inclusion also reduces rank, which is precisely the trend observed in
Figure 3. However, this appears to reverse when μp > 1 for a sufficiently
small number of participating place cells. This occurs because rendering
grid cells redundant by increasing phase multiplicity lowers the rank of the
grid-only component of the code. Consequently, including place cells in-
creases rank, until the information contributed by the place cells reaches
its maximum, at which point the inclusion of additional place cells only
lowers rank. Error bars (measuring SEM) are included due to the stochastic
nature of instantiating certain parameters (e.g., ξ, which is always chosen
uniformly randomly from the set of quantized locations).

We also computed rank, R, as a function of code rate, r = C
N (number of

locations represented per neuron), a measure of spatial resolution and effi-
ciency of the encoding (i.e., for a fixed L, a higher code rate, r, is obtained
by lowering �L or by decreasing N). It is their common demoninator (N)
that links the dependence on population size of both rank and rate. When
phases are chosen randomly, low rank is difficult to obtain at all, but the
smallest of code rates tested (r ∈ [0, 1] and μp > 1 may result in low ranks
if enough place cells are included). In contrast, Figure 4 shows that codes
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Figure 3: Code rank (R) versus number of place cells (P) for a uniform allocation
of grid cells. Increasing phase multiplicity (μp) produces a code with low rank
until sufficiently many place cells are included in the code that additional place
cells contribute only redundant location information. Here (and in any other
plot containing them) error bars show standard error of the mean (SEM). The
codes with μp = 1 exhibit slightly greater variability in R (i.e., larger SEM) than
those with μp = 5. N = 80 + P.

spanning the spectrum of normalized ranks may be instantiated over a wide
range of rates with appropriate choice of parameters. Further, this indicates
that redundancy reduces dimensionality so low ranks are achievable even
at rates much greater than biologically relevant. Later, we show that this
low dimensionality is important in constructing sparse and readily denois-
able representations of space. Figure 4 demonstrates that without the redun-
dancy introduced by increasing μp > 1, a hybrid code that encodes in 90
neurons more than 90 locations in a 9 m2 environment has full rank. How-
ever, when μp > 1, there is a stark drop in the maximum rank achieved.
As shown, when μp > 1, one may encode orders-of-magnitude more loca-
tions while maintaining low dimensionality. This trend is observed in each
configuration shown and when grid cells are allocated to modules nonuni-
formly. Thus, both dense and sparse hybrid codes may be developed with
proper choices of redundancy parameters.

A code’s resilience to neural noise can be assessed by the minimum pair-
wise (Euclidean) distance between code words, (d). Traditionally, Hamming
distance is used as the operative metric for characterizing minimum dis-
tance of a code. However, in cases when soft information is used by the
decoder, Euclidean distance can prove to be more useful. Higher d (i.e.,
larger distances between code words) corresponds to a more noise-tolerant
neural representation of space (Lin & Costello, 1983). In fact, ideally all er-
rors induced by noise with amplitude less than � d−1

2 
 are correctable (Lin
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Figure 4: Code rank (R) versus logarithm of code rate (log10(r)) for grid cell or-
ganization choices consistent with observations in Stensola et al. (2012) with
M = 4, J = 20, P ∈ {10, 100}, grid cells allocated to modules uniformly, and
μp ∈ {1, 4, 5}. Without grid cell phase redundancy, rank saturates for relatively
small rates. In contrast, when phase redundancy is imposed on the grid cell
population, low ranks are achievable at a wide range of rates. In each case con-
sidered here, N = 80 + P.

& Costello, 1983; Sreenivasan & Fiete, 2011). (For an intuitive illustration
of this, see appendix D). We computed d as a function of rate, r, for differ-
ent phase multiplicities, μp, (see Figure 5). For each configuration there is
a trade-off between d and r. Since rank tends to increase and saturate with
rate, this is also a trade-off between d and rank. When the rate is low, a
low resolution of location is targeted: d is larger, so more erroneous neu-
rons may be corrected. Note that for a fixed value of r, the codes with
μp = 5 have slightly smaller d, and this difference grows to saturation as
r increases. Interestingly, at high rates, the decrease in d produced by in-
creasing μp is much smaller for the population with grid cells distributed
to modules nonuniformly. This observation applies for the highest rates for
which computation of d is tractable with modern high-performance com-
puters: r < 106. Thus, for a fixed r and large enough μp, the code with grid
cells allocated to modules nonuniformly should exhibit measurably better
denoising performance. We test this prediction by simulating the denoising
process and collecting statistics presented in Figures 10 through 14. Sur-
prisingly, for small r, with a uniform allocation of grid cells to modules,
increases in μp appear to effect small decreases in d, while when grid cells
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Figure 5: Minimum distance (d) versus code rate (r), for grid cell organization
consistent with observations in Stensola et al. (2012), with M = 4, and P = 10.
Data corresponding to μp = 1 are marked with dashed curves and μp = 5 by
dot-dashed curves. In order to ensure N = 90, we choose J = 20 in the uniform
case and J = 32 in the nonuniform case. For r > 20, d decreases with increases in
r and μp. However, for small r and grid cells allocated to modules nonuniformly,
increasing μp evokes an increase in d. The apparent ordering of configurations
considered extends to much larger r than shown here (specifically, we probed
r ≤ 106).

are allocated to modules nonuniformly, increases in μp produce small but
discernable increases in d.

For environments of a fixed size, x2
maxcm2, and a hybrid code with N neu-

rons, varying code rates implies quantizations of space with varying unit
width (�L = xmax√

C
). Since rate, r = C

N , �L = xmax√
Nr

. Thus, the spatial sampling
period, �L, is inversely proportional to

√
r. In order to ensure we probed

reasonable code rates, we estimate the typical perceivable spatial period of
a rat (through its place cells) by considering its running speed (ranging from
.1 to 100 cm

s ), and average ISI of 150 ms (Gupta, Van Der Meer, Touretzky, &
Redish, 2012), which bounds neural sampling periods for space, implying
that �L should lie somewhere in [0.15, 15] cm. Code rates considered in this
work assume �L < 15 cm. To satisfy curiosity and probe rate-dependent
phenomena at even greater rates, the smallest �L considered is 0.0022 cm.

In order to investigate how the fundamental limits on denoisability of the
code scale with the number of pattern neurons (i.e., grid and place cells), we
compute d as a function of N, independently varying P, M, {Ji}i∈{1,...,M}), fix-
ing other paramters. As illustrated in Figure 6, minimum distance increases
exponentially with increases in N due to increases in the number of place
cells, P, and number of grid cells per module, Ji. In contrast, increases of M
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Figure 6: (a) Minimum distance, d, versus number of grid modules, M, with
J = 20 grid cells in the first module, five-fold replication of grid cell phases
(i.e., μp = 5), uniform and nonuniform allocations of grid cells to modules,
and no place cells. In the uniform (resp. nonuniform) case, N = M · 20 (resp.
N = ∑M

m=1� 20
λm−1 
). (b) Minimum distance, d, versus number of neurons in the

first module, J, for uniform and nonuniform allocations of grid cells to mod-
ules, and no place cells. N is calculated as in panel a. (c) Minimum distance, d,
versus number of place cells, P, for a population of place cells resembling those
observed in experiment (Nadel & O’Keefe, 1978; Muessig et al., 2015; Aronov
et al., 2017) with no grid cells (i.e., N = P). A complete list of parameters is in
appendix F.

past a critical value cease to improve minimum distance because the spa-
tial scale at which higher-order modules represent position fails to capture
relevant differences in location encoded. Notably, when all other param-
eters are fixed, nonuniform allocations of grid cells to modules provide a
code with inferior minimum distance. This is a consequence of the greater
number of pattern neurons in the uniform case and can be considered the
loss incurred in exchange for an increase in coding efficiency, (measured by
number of neurons used to encode position), as discussed in Mosheiff et al.
(2017).

3.2 Code Learning Results. In order to study how algorithm 1, neu-
ral learning, affects the denoising network, we assess the changes in con-
nectivity that it produces. Typical learned connectivity matrices and their
associated normalized degree distributions (empirical distributions of the
number of connections emanating from pattern neurons, normalized to the
total number of pattern neurons, N) are found in Figures 7 and 8. These
demonstrate that for a typical hybrid code, the clustered network has a
sparser connectivity, with less variability in its sparsity compared to the
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Figure 7: Image of typical synaptic weight matrices learned by two denoising
networks for a hybrid code with M = 4, J = 20, and P = 20. In this example,
N = 100 and nc = 64.

Figure 8: Degree distributions of the connectivity matrices shown in Figure 7.

unclustered network. This is because clustering enforces a tighter limit on
the number of pattern neurons to which a constraint neuron may connect.
We simulated an ensemble of 4 modules of 20 grid cells each, together with
20 place cells, which produced the following connectivity matrices and as-
sociated degree distributions. Interestingly, in both cases, there are place
cells (i.e., pattern neurons with index exceeding 80) that are left uncon-
nected to grid modules via constraint neurons. An illustration of the learned
weights matrix corresponding to a randomly clustered denoising network
was omitted, as it is sparser, but otherwise very similar to that of the un-
clustered weights image.

Figure 9 depicts the average connection strength between place cells
and grid modules, where the connection strength between place cell p and
grid module m is defined as 1

nc

( ∑
(i, j) |wi, jwi,p|

)
, where i indexes constraint
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Figure 9: Average connectivities between place cells (index along the x-axis)
and grid modules for configurations with M = 4, J = 20, P = 20, N = 100, and
nc = 64. Place cell indices are ordered from smallest to largest receptive field
size; grid cell phases were uniformly distributed on the environment. Grid cells
were uniformly distributed to modules. Connection strengths depicted are av-
eraged over 50 networks.

neurons, and j indexes grid cells in module m. Note here that connectivity
implies not direct synaptic connection but effective connectivity through
constraint neurons. Results were obtained from configurations with M = 4,
J = 20, and P = 20; connectivities depicted are averaged over 50 networks.
Place cells are ordered by increasing the size of the receptive field. This trend
appears for any μp > 1 (i.e., whenever the responses of at least some grid
cells are replicated by instantiating multiple grid cells with the same phase
in the same module). In the modularly clustered case, average connectiv-
ity (between place cells and all grid modules) appears to decrease with in-
creasing place cell size, as compared to a random clustering that produces
nearly the same connectivity for each place cell. This phenomenon was not
observed when grid cell phases and orientation offsets were chosen ran-
domly and does not appear in the unclustered configuration.

3.3 Denoising and Decoding Results. In order to study the relation-
ship between coding theoretically relevant variables, population param-
eters, denoising network configuration, and fidelity of the hybrid code’s
representation of space, we empirically evaluate the denoising network’s
performance. To measure the effectiveness of the denoising network, we
first perturb the states (i.e., firing rates) of the grid and place cells by
incrementing or decrementing randomly and clipping to the boundaries
of [0, Q − 1]. A pattern error occurs if, after denoising, any entry of the
denoised pattern differs from the corresponding component of the origi-
nal pattern. A symbol error occurs each time any symbol of the denoised
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Figure 10: Pattern error rate, Ppe, versus initial number of errors, E, for a clus-
tered hybrid code with M = 4, J = 20 (in the networks with grid cells allocated
to modules nonuniformly, J = 32 to ensure N = 90 pattern neurons) and P = 10.
Other configurations assessed (specifically, those with random redundancy pa-
rameters and those with an unclustered denoising network) have Ppe = 1 for
any initial number of errors. In each case considered, nc = R · N. This choice is
discussed in further detail in appendix A.

pattern differs from the corresponding symbol of the correct pattern. For
identical populations of grid and place cells (M = 4, J = 20, and P = 10) in
pattern error rate, the clustered network dramatically outperforms the un-
clustered (when the grid cells have sufficient redundancy), and the modular
clustering scheme always outperforms the random clustering scheme. By
fixing the size of the populations we compare, we ensure no improvement
in d results from a larger N. Figure 10 depicts pattern error rate (Ppe) for
a clustered hybrid code, with varying phase multiplicity. The missing con-
figuration (consisting of a randomly clustered network with a code with a
nonuniform allocation of grid cells to modules) had a 100% pattern error
rate for every nonzero number of initial errors. This shows that for a small
number of initial errors, the full pattern of population activity correspond-
ing to the correct location may be recovered, but in general, this is rarely
possible. That only the modularly clustered denoising networks are able to
achieve low Ppe shows that the biological organization of grid cells into dis-
crete modules is important for high-quality self-localization in the presence
of noise. Further, clustering is the only way to achieve such a small Ppe, since
no unclustered denoising network consistently reduced Ppe below 0.99. It
is surprising that the modularly clustered denoising mechanism achieves
a better Ppe when denoising hybrid codes with uniform allocations of grid
cells to modules (as compared to nonuniform allocations of grid cells to
modules), as Figure 5 demonstrates that such codes tend to have a larger
minimum distance at any rate probed. This result also demonstrates that
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Figure 11: Symbol error rate, Pse, versus initial number of errors, E, for clus-
tered and unclustered hybrid codes. Here, each code utilizes a uniform dis-
tribution of grid cells to modules and deliberately chosen spatial phases and
orientations (i.e., so as to mirror those observed in Stensola et al., 2012). N = 90.
The dotted red curve (with no markers), log10( initial number of errors

N ), is a thresh-
old between regions of desirable and unacceptable Pse (i.e., log10(Pse) for a net-
work that performs no denoising). For E < 10, configurations are ordered by
increasing Pse as modular clustering, μp = 5; random clustering, μp = 5; modu-
lar clustering, μp = 1; no clustering, μp = 5; no clustering, μp = 1; and random
clustering, μp = 1. As shown in the inset, for E < 5, configurations with μp = 1
produce symbol error rates above log10( initial number of errors

N ), that is, they increase
the number of symbol errors.

whether grid cells are distributed uniformly to modules has a smaller im-
pact on Ppe than μp. That the codes with larger μp tend to outperform those
with μp = 1 is also surprising, since at high rates (in Figure 10, r ≈ 103),
codes with larger μp are restricted to smaller d.

Figure 11 shows symbol error rates of hybrid codes for several config-
urations with deliberately chosen grid cell phases and orientations (i.e., so
as to mirror those observed in Stensola et al. (2012). This demonstrates that
generally, clustered denoising networks do not offer improved symbol er-
ror rate, Pse, compared to their unclustered counterparts. However, for a
small initial number of errors, when the grid cells exhibit sufficient redun-
dancy in their phases, a randomly clustered denoising network is outper-
formed only by a modularly clustered network. Figure 12 shows Pse for
a hybrid code with deliberately chosen phases and orientations, denoised
by a modularly clustered network. Consistent with observations on pat-
tern error rate, hybrid codes with grid cells uniformly allocated to modules
achieve better Pse. This may result from the fact that d is larger for such
codes when μp is small. However, this explanation is incomplete as when
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Figure 12: Symbol error rate, Pse, versus initial number of errors, E, for uniform
and nonuniform clustered hybrid codes. Here, each denoising network employs
the modular clustering scheme. In each case, N = 90, M = 4, P = 10. For grid
cells allocated to modules uniformly (resp. nonuniformly), J = 20 (resp. J = 32).
The dotted red curve, log10( initial number of errors

N ), is a threshold between regions of
desirable and unacceptable Pse (i.e., log10(Pse) for a network that performs no
denoising).

μp = 5, a code generated by a nonuniform allocation of grid cells to mod-
ules, tends to achieve a larger minimum distance than those generated by
uniform allocation of grid cells to modules. Plotted in both Figures 11 and
12 is a dotted red curve, log10( initial number of errors

N ). This curve is a threshold
between regions of desirable and unacceptable Pse (i.e., log10(Pse) for a net-
work that performs no denoising). To see this, consider a denoising net-
work that does not change the initial number of errors, E. For this network,
Pse = E

N , so log10(Pse) = log10(E) − log10(N). Surprisingly, Figure 11 shows
that for a small initial number of errors, configurations with μp = 1 have
log10(Pse) above this threshold, that is, they increase the number of symbol
errors! Figure 12 quantifies the loss incurred by the nonuniform allocation
of grid cells to modules (i.e., Jm ∝ 1

λm−1 ) for a modularly clustered denois-
ing network. Note that both grid cell allocation schemes produce networks
that introduce additional errors during denoising when μp = 1 and E = 1,
as these conditions result in Pse > E

N . Note that for E > 1, no network intro-
duces extraneous errors by denoising. Additionally, networks with μp = 5
dramatically outperform those with μp = 1, when E is small.

Figure 13 shows MSE of different decoding processes after denoising for
a hybrid code with M = 4, J = 20, P = 10, and μp = 5, for deliberately cho-
sen grid cell parameters (i.e., so as to mirror those observed in Stensola et al.,
2012). This plot demonstrates that an ideal observer decoder that considers
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Figure 13: MSE of decoding after denoising for a hybrid code with M = 4,
J = 20, P = 10, and μp = 5, and deliberately chosen grid cell parameters (i.e.,
so as to mirror those observed in Stensola et al., 2012). Grid cells are allocated
to modules uniformly, so N = 90. Here, nc = 64.

information from all cells outperforms all others for any initial number of
errors. This disparity may in part be accounted for by the difference be-
tween the number of grid cells and the number of place cells. Figure 14
shows MSE of joint hybrid decoding after denoising for a hybrid code with
μp = 5, for the configurations that achieved the best error correction per-
formance in both Ppe and Pse. This plot demonstrates that the code with
grid cells distributed to modules uniformly with a modularly clustered de-
noising network achieves the best decoding performance, outperforming
its nonuniformly arranged analogue. Since the code with a nonuniform al-
location of grid cells to modules had a larger minimum distance (compared
to the same code with a uniform allocation of grid cells to modules), this
result challenges our earlier hypothesis that codes with nonuniform alloca-
tions of grid cells across modules may be denoised more effectively. This is
especially remarkable since in section 3.1, we demonstrated that these codes
achieve larger minimum distance for identical N at large r, such as the rate
considered in Figure 14. Further, this demonstrates (in a natural metric of
the stimulus space) that in the most redundant hybrid code considered, a
modularly clustered denoising network is far superior to a randomly clus-
tered or unclustered one. Interestingly, for a small number of initially erro-
neous pattern neurons, the loss (in MSE) due to a lack of modular clustering
is much greater than the loss due to nonuniformity.

4 Discussion

We demonstrated that both dense and sparse hybrid codes may be con-
structed by proper choice of grid and place cell parameters. We also showed
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Figure 14: MSE of decoding after neural denoising (cm2) versus initial number
of errors for a hybrid code with μp = 5, N = 90.

that in the presence of neural noise, the activity of only configurations with
sufficient redundancy in the grid cell component of the code may be con-
sistently denoised. It is somewhat counterintuitive that populations with
replicated grid cell responses (i.e., μp > 1) produce a more noise-resilient
code (as shown in the denoising performance results). This is surprising
because the populations with uniformly allocated grid cells and largest d
are those with unique spatial phases (i.e., μp = 1; see Figure 5). This result
is counterintuitive (in the biological sense) as in Hafting et al. (2005), it is
noted that the distribution of grid cell phases observed in experiment did
not deviate significantly from uniformity. Wennberg (2015) revealed that
the distribution of spatial phase offsets of grid cells may be significantly
nonuniform. The data set from which this conclusion is drawn was obtained
from rat 14147 in Stensola et al. (2012). Our results imply that this observed
nonuniformity in distribution of grid cell phases provides value in denois-
ability and accuracy of decoding.

Our results reveal another surprise in Figure 5, in which, for μp > 1,
codes with nonuniform allocations of grid cells to modules achieve demon-
strably larger d. However, in Figure 12, the networks with μp = 5 and grid
cells allocated to modules uniformly achieve the smallest Pse. Further, in
Figures 10 and 14, for a small number of initially erroneously signaling
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neurons (E), these networks outperform those with grid cells allocated to
modules nonuniformly. These observations demonstrate that the hybrid
code for space may trade off improvements in denoising performance (in d)
for efficiency of encoding (r) by distributing grid cells to modules nonuni-
formly, as suggested in Mosheiff et al. (2017).

Hybrid codes of widely varying rank, minimum distance, and code rate
(R, d, and r, respectively) may be instantiated by choosing appropriate pa-
rameters for the populations of grid and place cells, a fact that showcases
the code’s adaptability. This means that grid and place cells may participate
in neural computations that rely on assumptions other than those presented
here, which insist on a low-dimensional code space and a sparse connectiv-
ity matrix. It is particularly difficult to characterize the trade-off between
code rate and d, presented in Figure 5, as it indicates that for biologically
reasonable values of r, increases in μp should reduce a code’s minimum
distance, d (a fundamental limit of the code’s denoisability). Surprisingly,
the configuration with uniformly allocated grid cells and μp = 5 tends to
outperform the others in Ppe, Pse, and MSE. It is possible that the denoising
networks presented here are incapable of achieving the codes’ error correc-
tion capacities in the cases considered. This would allow for characteristics
endowed by a larger μp to effect the stark differences observed in denoising
efficacy and decoding accuracy. Furthermore, this explanation seems likely,
as coding theory suggests that the maximum number of correctable errors
in a linear block code (as a function of d) can be computed as t = � d−1

2 
 (Lin
& Costello, 1983). For example, the strongest code (as measured by largest
value of d in Figure 5) achieves d ≈ 5 for intermediate r, so t ≈ 2. Figure 10
corroborates this in demonstrating that pattern error rate exceeds 0.5 (and
quickly saturates at 1) for more than two errant pattern neurons.

We demonstrate that the chosen denoising network architecture per-
forms satisfactorily for hybrid codes that fit its requirements regarding
rank and poorly for those that do not. Additionally, we assessed aver-
age connectivity between place cells of varying receptive field sizes and
modules of grid cells by analyzing the learned connectivity matrix. This
analysis demonstrates that our model place cells of smaller receptive field
size are more strongly connected to grid modules and that they are most
strongly connected to grid modules of the smallest scale. Moreover, this
result presents a physiologically testable hypothesis. While difficult, two-
photon microscopy has been successfully employed to accurately image the
microscopic structure of nervous tissue (Svoboda & Yasuda, 2006). One way
to estimate connection strength between real neurons is to count the num-
ber of boutons expressed on the presynaptic neurons, assuming that weight
should be proportional to this number, though there may be simpler ways to
estimate connection strength (Bi & Poo, 1998). Thus, if groups of place cells
connected via constraint neurons to several distinct grid modules may be
identified, this theoretical prediction—that connectivity between the hip-
pocampus and MEC will decrease along the dorsoventral axis—can be
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confirmed or refuted. Another interesting experiment is made possible by
advances in optogenetics, which enable single cell resolution of network ac-
tivity for a population of inoculated cells (e.g., a collection of grid cells, as
in Sun et al., 2015). While technically challenging due to the physical sepa-
ration of each population in the brain, it should be possible to image simul-
taneous activity of grid and place cells at high temporal precision (Grewe,
Langer, Kasper, Kampa, & Helmchen, 2010). From these measurements, for
a set of quantized locations, simultaneous firing rates may be estimated
(Theis et al., 2016). Then the rank, rate, and minimum distance of this empir-
ical codebook may be computed to offer insight into limits of noise tolerance
of real spatial navigation circuitry. Of particular interest is discovering the
extent to which neural noise transiently varies such attributes for grid and
place cells in real brains and how these coding theoretic properties adapt (if
at all) to changes in speed, context, and other variables.

In Figures 10, 12, 13, and 14, we demonstrate the differences in per-
formance of each network structure and of the various decoding algo-
rithms. The universal improvements from place-only decoding to joint-
hybrid decoding show that highly accurate position estimation can be
significantly more difficult without both populations of cells. The discrep-
ancy between grid-only decoding and grid decoding conditioned on place
response shows that even utilizing place cell information indirectly (by
eliminating candidate locations deemed impossible given the state of the
place cell population) yields a sizable improvement in decoding accuracy
when there are many place cells or when place cells are less noisy than grid
cells. That the modularly clustered networks tend to best the corresponding
randomly clustered networks implies that the physiological organization
of grid cells by their spatial scale may provide a computational advantage
in denoising and decoding. This notion is further supported by the obser-
vation that a randomly clustered network sometimes introduces additional
errors by attempting to denoise, as shown in Figure 11. This may be because
the unclustered network is essentially a randomly clustered network that
does not take advantage of synergistic cluster computing. In any cluster,
both grid cells and place cells are able to correct each other’s errant activity.
However, under modular clustering, in order for a grid cell in module i to
correct the activity of a grid cell in a different module j, the activity of each
neuron in module i must be correct so that the activity of place cells (con-
nected to both modules i and j) will contradict and correct the erroneous
activity.

It should be noted that the denoising constraint neurons are a hypothet-
ical construct and need not reside in the hippocampus or MEC in order to
execute the previously described computations. Our conception of these
constraint nodes is as single units. However, these may represent larger
networks of neurons performing identical computations. Furthermore, this
work is not intended to convince readers of the necessity or existence
of these cells, only to demonstrate tangible coding theoretic advantages
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conferred by constraint neuron moderated communication between grid
and place cells. Additionally, some models of development of the grid and
place cell networks demonstrate dependence between properties of each
population’s apparent receptive fields that our model is unable to capture
(Monaco & Abbott, 2011). Thus, coding theoretic results presented here
are confined to consideration of a more static code than what is often ob-
served in recordings of real neuronal populations. While our model is lim-
ited in the sense that neurons are defined functionally (in contrast with
biophysical models, where behavior emerges from the time evolution of
the model’s physics), the learning algorithms considered are analogous to
a Hebbian plasticity, and operations required for denoising can be feasibly
implemented by networks of real neurons (if not by single units). Hence, the
results discussed here have potential implications about neural codes for
other continuously valued stimuli (e.g., pitch of an auditory signal, another
variable encoded in the mammalian hippocampus; Aronov et al., 2017).

Contributions of this work include the coding model and denoising sys-
tems themselves, as a framework in which to characterize limits on fidelity
of cooperating neural codes subject to noise (for physical position or other
variables such as the auditory pitch code studied in Aronov et al., 2017),
and improved clarity about how parameterization of grid and place cell
populations affects these fundamental information and coding theoretic
limits. Further development along these threads of investigation of neu-
ral codes for space includes studying coding theoretic properties of more
complete navigational codes, including head direction cells, boundary vec-
tor cells, and time cells (Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009;
Salz et al., 2016; Taube, Muller, & Ranck, 1990). It would be most interesting
to probe coding and information-theoretic properties of place cells that en-
code 3D space as demonstrated to reside in the bat hippocampus (Yartsev &
Ulanovsky, 2013). Even with these classes of neuron, the hybrid code might
be unable to encode and denoise path information without supplementary
structure to process its sequentiality. One strong candidate solution for this
is to include so-called hippocampal time cells. Just as place cells code for
distinct locations on paths through space, time cells encode ordered mo-
ments in a temporally ordered sequence of events, precisely the informa-
tion, which, when coupled with location, should allow for the encoding of
paths (MacDonald, Lepage, Eden, & Eichenbaum, 2011).

Appendix A: Network Size

N, the number of pattern neurons in a network, is the sum of the sizes of the
constituent grid and place cell populations. When grid cells are allocated to
modules uniformly, N = P + M · J. Otherwise, N = P + ∑M

m=1
J

λm−1 .
Since a code of normalized rank R admits at most N(1 − R) unique con-

straint equations (i.e., linear combinations of pattern neuron activities that
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evaluate to zero only when this activity forms a code word and the func-
tions computed by constraint neurons), we use nc = N(1 − R).

Appendix B: Subspace Learning

Oja and Karhunen (1985) propose an algorithm that is capable of computing
a basis for the null space of a random matrix, A, which is assumed to be the
expected value of sample matrices, At . The update rule for the matrix whose
columns are the resulting basis vectors is

W̃t = Wt−1 + At−1Wt−1αt−1, (B.1)

Wt = W̃tR−1
t , (B.2)

where αt is a diagonal (and compatible) matrix of gain factors. As in Oja and
Karhunen (1985), equations A.1 and A.2 may be rewritten as operations on
column vectors, wt ,

w̃t = wt−1 + αt−1At−1wt−1, (B.3)

wt = w̃t

‖w̃t‖ , (B.4)

in which αt is the gain factor corresponding to the current column. This
number may be equivalently understood as a learning rate. Indeed Xu,
Krzyzak, and Oja (1991), show that for appropriate choices of At , the up-
date rule is a form of anti-Hebbian learning. Oja and Karhunen (1985) prove
convergence of this algorithm to the eigenvectors of A corresponding to the
largest eigenvalues. Further, when At is replaced by −At , wt converges to
the eigenvectors of A corresponding to the smallest eigenvalues. Oja and
Karhunen (1985) demonstrate that by combining equations A.3 and A.4,
expanding as a power series in αt , and ignoring second (and higher) order
terms, we arrive at

wt = wt−1 + αt−1

(
At−1wt−1 − wT

t At−1wt−1

wT
t−1wt−1

wt−1

)
. (B.5)

(Salavati et al., 2014) choose At = (xT
t xt )Pxt = xtxT

t , the product of projec-
tions onto the space spanned by xt , and define yt = xT

t wt = wT
t xt . Oja and

Karhunen (1985) mentioned that this update rule finds eigenvectors cor-
responding to the largest eigenvalue of At or those corresponding to the
smallest eigenvalues of −At when this matrix is used instead. Since At is a
projection matrix, it has rank 1. Thus, it has one eigenvector with nonzero
eigenvalue, xt , and dim(x) − 1 eigenvectors with eigenvalue 0. Each of these
eigenvectors, v, is guaranteed to be perpendicular to x because Atv = 0v =
0, that is, the v’s projection onto x has magnitude 0. By choosing xt ∈ C, with
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Figure 15: An illustration of the relationship between minimum distance of a
code and its resilience to noise.

the aforementioned choice for At , this algorithm should compute vectors
approximately perpendicular to the code space.

Now, we may rewrite equation A.5 as

wt = wt−1 − αt−1xt−1xT
t−1wt−1 + αt−1

wT
t−1xt−1xT

t−1wt−1

‖wt−1‖2 wt−1

= wt−1 − αt−1yt−1xt−1 + αt−1
y2

t−1

‖wt−1‖2 wt−1. (B.6)

To obtain a sparse basis for null(C), one may add to equation A.6 a reg-
ularizing term that penalizes nonsparse solutions. In particular, using
η
(wt−1, θt−1), as considered in Salavati et al. (2014), to arrive at

wt = wt−1 − αt−1

(
yt−1

(
xt−1 − yt−1wt−1

‖wt−1‖2

))
− αt−1η
(wt−1, θt−1). (B.7)

Appendix C: Structure of the Performance Testing Simulations

In order to evaluate the performance of the denoising mechanisms pro-
posed here, we first generate codes from the parameters considered in ap-
pendix E. Then algorithm 1 is applied to the chosen denoising network.
After learning is complete, in sequence, C randomly chosen code words are
corrupted and presented to the network to denoise using algorithms 2 and
3. After the denoising process is complete, the denoised pattern is assessed
and performance is computed incrementally.

Appendix D: How Minimum Distance Limits Ideal Decoding

Suppose x and z are two code words separated by their code’s minimum
distance, d, as shown in Figure 15, and that during transmission of x, our
channel adds noise, n. If the magnitude of this noise (‖n‖) exceeds d

2 , the
received word (y), may lie a distance t < d

2 away from z. As a result, a
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minimum distance decoder (which outputs the code word nearest to the
received word) incorrectly declares that z was transmitted. If error events
at the symbols of code words are independent and the probability of error
does not depend on the position of the symbol in question, as long as this
probability does not exceed 1

2 , minimum distance decoding is maximum
likelihood decoding.

Appendix E: Parameter and Variable Definitions

We present a table of definitions considered in this article.

Parameter Definition

L Length of simulated square arena
C Number of locations (code words) that comprise the code in question
M Number of modules of grid cells
J Number of neurons in the first module of grid cells
P Number of place cells
μp Number of grid cells with the same phase in the same module
λ Scaling ratio between grid modules
λi Scale of the ith grid module
θm, j Orientation offset of the jth grid cell of module m
αt Learning rate at iteration t
ε Learning completion threshold
η Sparsity penalty coefficient
C Codebook: A collection of code words formed by the simultaneous activity

of pattern neurons
C Codebook matrix constructed by placing elements of C in rows
R Normalized rank of the code, rank(C)

N
r Normalized code rate (i.e., number of locations represented per neuron): C

N
d Minimum distance of a code (minimum among all distances between code

words)

Appendix F: Choices of Parameters

In learning, normalized weights are initialized randomly with degree
�4 loge(n)�, where n is the length of the weight vector. We used, θ0 =
0.031, η = 0.075, and α0 = 0.95. In denoising, we set φ = 0.95. Unless oth-
erwise noted, dependent variables measured and computed are mean val-
ues averaged over 100 networks. Error bars represent standard error of the
mean.

Here we present a table of parameters indexed by figure in this article.
N/A means either that this parameter was varied or was not used.
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Table 1: Parameters Indexed by Figure.

Figure L (cm) C M J P λ λ1 (cm) μp ε

3 300 1000 4 20 NA
√

(2) 40 NA NA
4 300 1000 NA NA NA NA 40 NA NA
5 300 NA NA NA NA

√
(2) 40 NA NA

6 300 NA 4 20 10
√

(2) 40 NA NA
7 300 NA 4 20 NA

√
(2) 40 5 NA

8 300 105 4 20 20
√

(2) 40 5 C10−3

9 300 105 4 20 20
√

(2) 40 5 C10−3

10 300 105 4 20 20
√

(2) 40 5 C10−3

11 300 105 4 20 10
√

(2) 40 NA C10−3

12 300 105 4 20 10
√

(2) 40 NA C10−3

13 300 105 4 20 10
√

(2) 40 NA C10−3

14 300 105 4 20 10
√

(2) 40 5 C10−3

15 300 105 4 20 10
√

(2) 40 5 C10−3

Acknowledgments

This work is supported in part by National Science Foundation grants IIS-
1464349 and CCF-1748585.

References

Amit, D. J., & Treves, A. (1989). Associative memory neural network with low tem-
poral spiking rates. Proceedings of the National Academy of Sciences, 86(20), 7871–
7875.

Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension
by the hippocampal–entorhinal circuit. Nature, 543(7647), 719.

Bi, G.-q., & Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal neu-
rons: Dependence on spike timing, synaptic strength, and postsynaptic cell type.
Journal of Neuroscience, 18(24), 10464–10472.

Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J. L., . . . Moser,
M.-B. (2013). Grid cells require excitatory drive from the hippocampus. Nature
Neuroscience, 16(3), 309–317.

Chen, J., & Fossorier, M. P. (2002). Near optimum universal belief propagation based
decoding of low-density parity check codes. IEEE Transactions on Communications,
50(3), 406–414.

Curto, C., Itskov, V., Morrison, K., Roth, Z., & Walker, J. L. (2013). Combinatorial
neural codes from a mathematical coding theory perspective. Neural Computation,
25, 1891–1925.

Declercq, D., & Fossorier, M. (2007). Decoding algorithms for nonbinary LDPC codes
over GF (q). IEEE Transactions on Communications, 55(4), 633–643.



1548 D. Schwartz and O. Koyluoglu

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human
memory network. Nature, 463(7281), 657.

Eccles, J. (1976). From electrical to chemical transmission in the central ner-
vous system. Notes and Records of the Royal Society of London, 30(2), 219–
230.

Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman,
E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation.
Nature, 425(6954), 184–188.

Fiete, I. R., Burak, Y., & Brookings, T. (2008). What grid cells convey about rat loca-
tion. Journal of Neuroscience, 28(27), 6858–6871.

Fyhn, M., Hafting, T., Witter, M. P., Moser, E. I., & Moser, M.-B. (2008). Grid cells in
mice. Hippocampus, 18(12), 1230–1238.

Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M., & Helmchen, F. (2010). High-
speed in vivo calcium imaging reveals neuronal network activity with near-
millisecond precision. Nature Methods, 7(5), 399–405.

Gupta, A. S., Van Der Meer, M. A., Touretzky, D. S., & Redish, A. D. (2012). Segmen-
tation of spatial experience by hippocampal theta sequences. Nature Neuroscience,
15(7), 1032.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052), 801.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–
2558.

Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., . . . Ka-
hana, M. J. (2013). Direct recordings of grid-like neuronal activity in human spa-
tial navigation. Nature Neuroscience, 16(9), 1188–1190.

Karbasi, A., Salavati, A. H., & Shokrollahi, A. (2013). Iterative learning and de-
noising in convolutional neural associative memories. In Proceedings of the
30th International Conference on Machine Learning (pp. 445–453). New York:
ACM.

Karbasi, A., Salavati, A. H., Shokrollahi, A., & Varshney, L. R. (2014). Noise facil-
itation in associative memories of exponential capacity. Neural Computation, 26,
2493–2526.

Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., & Burgess, N. (2009). Boundary vec-
tor cells in the subiculum of the hippocampal formation. Journal of Neuroscience,
29(31), 9771–9777.

Lin, S., & Costello, D. (1983). Error-correcting codes. Upper Saddle River, NJ: Prentice
Hall.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal
“time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4),
737–749.

McEliece, R. J., Posner, E. C., Rodemich, E. R., & Venkatesh, S. S. (1987). The capac-
ity of the Hopfield associative memory. IEEE Transactions on Information Theory,
33(4), 461–482.

Monaco, J. D., & Abbott, L. F. (2011). Modular realignment of entorhinal grid cell ac-
tivity as a basis for hippocampal remapping. Journal of Neuroscience, 31(25), 9414–
9425.



On the Organization of Grid and Place Cells 1549

Mosheiff, N., Agmon, H., Moriel, A., & Burak, Y. (2017). An efficient coding theory
for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells
to modules. PLoS Computational Biology, 13(6), e1005597.

Muessig, L., Hauser, J., Wills, T. J., & Cacucci, F. (2015). A developmental switch
in place cell accuracy coincides with grid cell maturation. Neuron, 86(5), 1167–
1173.

Nadel, L., & O’Keefe, J. (1978). The Hippocampus as a Cognitive Map. Oxford:
Clarendon.

Oja, E., & Karhunen, J. (1985). On stochastic approximation of the eigenvectors and
eigenvalues of the expectation of a random matrix. Journal of Mathematical Anal-
ysis and Applications, 106(1), 69–84.

Oja, E., & Kohonen, T. (1988). The subspace learning algorithm as a formalism for
pattern recognition and neural networks. In IEEE International Conference on Neu-
ral Networks, 1988 (pp. 277–284). Piscataway, NJ: IEEE.

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experi-
mental Neurology, 51(1), 78–109.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Prelimi-
nary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–
175.

Salavati, A. H., Kumar, K. R., & Shokrollahi, A. (2014). Nonbinary associative mem-
ory with exponential pattern retrieval capacity and iterative learning. IEEE Trans-
actions on Neural Networks and Learning Systems, 25(3), 557–570.

Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W., &
Eichenbaum, H. (2016). Time cells in hippocampal area CA3. Journal of Neuro-
science, 36(28), 7476–7484.

Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code
for singularly precise neural computation. Nature Neuroscience, 14(10), 1330.

Stemmler, M., Mathis, A., & Herz, A. V. (2015). Connecting multiple spatial scales to
decode the population activity of grid cells. Science Advances, 1(11), e1500816.

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., & Moser, E. I. (2012).
The entorhinal grid map is discretized. Nature, 492(7427), 72–78.

Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization
of the hippocampal longitudinal axis. Nat. Rev. Neurosci., 15(10), 655–669.

Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L. J., . . . Tone-
gawa, S. (2015). Distinct speed dependence of entorhinal island and ocean cells,
including respective grid cells. Proceedings of the National Academy of Sciences,
112(30), 9466–9471.

Svoboda, K., & Yasuda, R. (2006). Principles of two-photon excitation microscopy
and its applications to neuroscience. Neuron, 50(6), 823–839.

Taube, J. S., Muller, R. U., & Ranck, J. B. (1990). Head-direction cells recorded from
the postsubiculum in freely moving rats. I. Description and quantitative analysis.
Journal of Neuroscience, 10(2), 420–435.

Theis, L., Berens, P., Froudarakis, E., Reimer, J., Rosón, M. R., Baden, T., Euler, T.,
. . . Bethge, M. (2016). Benchmarking spike rate inference in population calcium
imaging. Neuron, 90(3), 471–482.

Wennberg, D. (2015). The distribution of spatial phases of grid cells. Master’s thesis, Nor-
wegian University of Science and Technology.



1550 D. Schwartz and O. Koyluoglu

Xu, L., Krzyzak, A., & Oja, E. (1991). Neural nets for dual subspace pattern recogni-
tion method. International Journal of Neural Systems, 2(3), 169–184.

Yartsev, M., & Ulanovsky, N. (2013). Representation of three-dimensional space in
the hippocampus of flying bats. Science, 340, 367–372.

Yartsev, M. M., Witter, M. P., & Ulanovsky, N. (2011). Grid cells without theta oscil-
lations in the entorhinal cortex of bats. Nature, 479(7371), 103–107.

Received December 14, 2017; accepted April 2, 2019.


